$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2. Regular Tilling

• • Contributed by Pamini Thangarajah
• Professor (Mathematics & Computing) at Mount Royal University
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Goal: To appreciate polygons and support the idea that there are three regular polygons that be tessellated.

Terminology:

• A polygon is a closed 2-dimensional figure with straight sides

• An n-gon is a polygon with exactly n sides

• A regular n-gon is a polygon with exactly n sides, where all sides are of equal length and all interior angles of the polygon are equal. The sum of the interior angles of a regular n-gon is 180°(n - 2). It follows that each interior angle must measure 180°(n - 2)/n. So:

• A regular 3-gon is an equilateral triangle. Each interior angle is 60°

• A regular 4-gon is a square. Each interior angle is 90°

• A regular 5-gon is a regular pentagon. Each interior angle is 108°

• A regular 6-gon is a regular hexagon. Each interior angle is 120°

• A regular 7-gon is a regular heptagon. Each interior angle is 900/7°, or approximately 128.6°

• A regular 8-gon is a regular octagon. Each interior angle is 135°

Activity:

Suppose I want to tape the same regular n-gons together to make 2-dimensional shapes. What are my options? I don’t want to bend or fold the n-gons. Let’s just concentrate on the corners of these objects.

Fact: