2.3: The Limit Laws
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Evaluate limx→22x2, if possible.
- Evaluate limx→−37, if possible.
- Evaluate limx→5(3x−12), if possible.
- Evaluate limx→2x+7x−3, if possible.
- Evaluate limx→1lnxcos(πx), if possible.
- Evaluate limx→−1√x2−7x−2, if possible.
- Evaluate limx→0xx, if possible.
- Evaluate limx→−3x2−9x+3, if possible.
- Evaluate limx→4x2−6x+8x2+x−20, if possible.
- Evaluate limh→0(x+h)2−x2h, if possible.
- Evaluate limt→4√t−2t−4, if possible.
- Evaluate limθ→πsinθtanθ, if possible.
- Evaluate limh→01x+h−1xh, if possible.
- Evaluate limx→5x−53−√x+4, if possible.
- Evaluate limx→0sin(1x), if possible.
- Evaluate limx→−2−x2−1x2−x−6, if possible.
- Evaluate limx→−2+x2−1x2−x−6, if possible.
- Evaluate limx→−2x2−1x2−x−6, if possible.
- Evaluate limx→3−x2−1x2−x−6, if possible.
- Evaluate limx→3+x2−1x2−x−6, if possible.
- Evaluate limx→3x2−1x2−x−6, if possible.
- Evaluate limx→1−1x2−2x+1, if possible.
- Evaluate limx→1+1x2−2x+1, if possible.
- Evaluate limx→11x2−2x+1, if possible.
- Evaluate limx→0+√x, if possible.
- Evaluate limx→0+lnx, if possible.
- Consider the function
f(x)={x2,x<1,x,x≥1.
Find limx→1−f(x), limx→1+f(x), and limx→1f(x), if possible.
- Consider the function
g(x)={cosx,x≤0,sinx,x>0.
Find limx→0−g(x), limx→0+g(x), and limx→0g(x), if possible.
- Consider the function
h(x)={1x+1,x<−1,1x,−1≤x<0.
Find limx→−1−h(x), limx→−1+h(x), and limx→−1h(x), if possible.
- Consider the function
f(x)={|1−x2|,x<0,√2,x=0,ex,x>0.
Find limx→0−f(x), limx→0+f(x), and limx→0f(x), if possible.