Skip to main content
Mathematics LibreTexts

5.1: Approximating Areas

  • Page ID
    144292
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Compute \(\displaystyle \sum_{i = 1}^{10} 2i\).
       
    2. Compute \(\displaystyle \sum_{k = 3}^{7} (k^2 - 2k +1)\).
       
    3. Use a left-endpoint sum with \(n = 4\) subintervals to approximate the area under \(f(x) = \dfrac{1}{x - 1}\) on \([2, 3]\).
       
    4. Use a right-endpoint sum with \(n = 4\) subintervals to approximate the area under \(g(x) = \cos(\pi x)\) on \([0, 1]\).
       
    5. Use a left-endpoint sum with \(n = 8\) subintervals to approximate the area under \(h(x) = \sqrt{16 - x^2}\) on \([0, 4]\).
       
    6. Use a right-endpoint sum with \(n = 8\) subintervals to approximate the area under \(h(x) = \sqrt{16 - x^2}\) on \([0, 4]\).
       
    7. Use a midpoint sum with \(n = 8\) subintervals to approximate the area under \(h(x) = \sqrt{16 - x^2}\) on \([0, 4]\).
       
    8. Use formulas from geometry to calculate the exact area under \(h(x) = \sqrt{16 - x^2}\) on \([0, 4]\). [Hint: First graph the function.]

    5.1: Approximating Areas is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?