5.1: Approximating Areas
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Compute 10∑i=12i.
- Compute 7∑k=3(k2−2k+1).
- Use a left-endpoint sum with n=4 subintervals to approximate the area under f(x)=1x−1 on [2,3].
- Use a right-endpoint sum with n=4 subintervals to approximate the area under g(x)=cos(πx) on [0,1].
- Use a left-endpoint sum with n=8 subintervals to approximate the area under h(x)=√16−x2 on [0,4].
- Use a right-endpoint sum with n=8 subintervals to approximate the area under h(x)=√16−x2 on [0,4].
- Use a midpoint sum with n=8 subintervals to approximate the area under h(x)=√16−x2 on [0,4].
- Use formulas from geometry to calculate the exact area under h(x)=√16−x2 on [0,4]. [Hint: First graph the function.]