5.2: The Definite Integral
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Express limn→∞n∑i=1(x∗i)Δx over [1,3] as a definite integral.
- Express limn→∞n∑i=1sin2(2πx∗i)Δx over [0,1] as a definite integral.
- Evaluate ∫4−25 dx using formulas from geometry.
- Evaluate ∫31(3−x) dx using formulas from geometry.
- Evaluate ∫1−2(2x+1) dx using formulas from geometry.
- Evaluate ∫2−1(2−|x|) dx using formulas from geometry.
- Evaluate ∫3−3√9−x2 dx using formulas from geometry.
- Given that ∫10x dx=12, ∫10x2 dx=13, and ∫10x3 dx=14, evaluate ∫10(1−2x−3x2+8x3) dx.
- Given that ∫10x dx=12, ∫10x2 dx=13, and ∫10x3 dx=14, evaluate ∫10(1−2x)3 dx.
- Use a Riemann sum with the formulas n∑i=11=n and n∑i=1i=n(n+1)2 to evaluate ∫40(2x−5) dx.
- Use a Riemann sum with the formulas n∑i=1i=n(n+1)2 and n∑i=1i2=n(n+1)(2n+1)6 to evaluate ∫2−2(3x2−2x) dx.