Skip to main content
Mathematics LibreTexts

5.2: The Definite Integral

  • Page ID
    144293
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Express \(\displaystyle \lim_{n \to \infty} \sum_{i = 1}^{n} (x_i^*) \Delta x\) over \([1, 3]\) as a definite integral.
       
    2. Express \(\displaystyle \lim_{n \to \infty} \sum_{i = 1}^{n} \sin^2(2\pi x_i^*) \Delta x\) over \([0, 1]\) as a definite integral.
       
    3. Evaluate \(\displaystyle \int_{-2}^4 5\ dx\) using formulas from geometry.
       
    4. Evaluate \(\displaystyle \int_1^3 (3 - x)\ dx\) using formulas from geometry.
       
    5. Evaluate \(\displaystyle \int_{-2}^1 (2x + 1)\ dx\) using formulas from geometry.
       
    6. Evaluate \(\displaystyle \int_{-1}^2 (2 - |x|)\ dx\) using formulas from geometry.
       
    7. Evaluate \(\displaystyle \int_{-3}^3 \sqrt{9 - x^2}\ dx\) using formulas from geometry.
       
    8. Given that \(\displaystyle \int_0^1 x\ dx = \dfrac{1}{2}\), \(\displaystyle \int_0^1 x^2\ dx = \dfrac{1}{3}\), and \(\displaystyle \int_0^1 x^3\ dx = \dfrac{1}{4}\), evaluate \(\displaystyle \int_0^1 (1 - 2x - 3x^2 + 8x^3)\ dx\).
       
    9. Given that \(\displaystyle \int_0^1 x\ dx = \dfrac{1}{2}\), \(\displaystyle \int_0^1 x^2\ dx = \dfrac{1}{3}\), and \(\displaystyle \int_0^1 x^3\ dx = \dfrac{1}{4}\), evaluate \(\displaystyle \int_0^1 (1 - 2x)^3\ dx\).
       
    10. Use a Riemann sum with the formulas \(\displaystyle \sum_{i=1}^n 1 = n\) and \(\displaystyle \sum_{i=1}^n i = \dfrac{n(n+1)}{2}\) to evaluate \(\displaystyle \int_0^4 (2x - 5)\ dx\).
       
    11. Use a Riemann sum with the formulas \(\displaystyle \sum_{i=1}^n i = \dfrac{n(n+1)}{2}\) and \(\displaystyle \sum_{i=1}^n i^2 = \dfrac{n(n+1)(2n+1)}{6}\) to evaluate \(\displaystyle \int_{-2}^{2} (3x^2 - 2x)\ dx\).

    5.2: The Definite Integral is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?