Skip to main content
Mathematics LibreTexts

7.2: Vectors in Three Dimensions

  • Page ID
    143584
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Plot point \(P(2, 1, 3)\).
       
    2. Plot point \(Q(-3, 4, -2)\).
       
    3. Find the distance from point \(A(-5, -3, 5)\) to point \(B(0, 2, -2)\).
       
    4. Graph the surface \(x = 2\).
       
    5. Graph the surface \(y = -1\).
       
    6. Graph the surface \(z = 3\).
       
    7. Graph the surface \((x +1)(y - 3) = 0\).
       
    8. Graph the surface \(z(y^2 - 4) = 0\).
       
    9. Graph the surface \(xyz = 0\).
       
    10. Graph the surface \(y = x^2\).
       
    11. Graph the surface \(x = -z^2\)
       
    12. Graph the surface \(y^2 + z^2 = 1\).
       
    13. Graph the surface \( (x-1)^2 + (z + 2)^2 = 4 \).
       
    14. Graph the surface \( \dfrac{y^2}{9} + \dfrac{z^2}{4} = 1 \).
       
    15. Graph the surface \( \dfrac{z^2}{16} - \dfrac{x^2}{4} = 1\).
       
    16. Graph the surface \( x^2 + y^2 + z^2 = 1\).
       
    17. Graph the surface \( (x - 1)^2 + (y + 2)^2 + (z + 1)^2 = 4\).
       
    18. Find the center and radius of the sphere \(x^2 + y^2 + z^2 + 2x + 2z + 1 = 0\).
       
    19. Consider the points \(P(4, -1, 1)\) and \(Q(3, 1, -1)\). Express the vector \(\vec{PQ}\) in component form.
       
    20. Consider the points \(A(-1, 0, 1)\) and \(B(3, -2, -4)\). Express the vector \(\vec{BA}\) in terms of the standard unit vectors.
       
    21. Sketch vector \(\mathbf{v} = (1, 2, -3)\) in standard position, then sketch vector \(\mathbf{v}\) again with a different initial point.
       
    22. Sketch vector \(\mathbf{u} = -2\mathbf{i} - \mathbf{j} + \mathbf{k}\) in standard position, then sketch vector \(\mathbf{u}\) again with a different initial point.
       
    23. Perform the vector arithmetic. Express your answer in component form.
      \begin{equation*}
      (2, 8, 7) + (-5, 6, -6)
      \end{equation*}
       
    24. Perform the vector arithmetic. Express your answer in terms of the standard unit vectors.
      \begin{equation*}
      (4\mathbf{i} - 6\mathbf{j} - \mathbf{k}) + (7\mathbf{i} - 10\mathbf{k})
      \end{equation*}
       
    25. Perform the vector arithmetic. Express your answer in component form.
      \begin{equation*}
      (-10, 0, 10) - (3, -2, -5)
      \end{equation*}
       
    26. Perform the vector arithmetic. Express your answer in terms of the standard unit vectors.
      \begin{equation*}
      (6\mathbf{i} + 2\mathbf{j} - 9\mathbf{k}) - (9\mathbf{i} + 2\mathbf{j} - 10\mathbf{k})
      \end{equation*}
       
    27. Let vector \(\mathbf{u} = (4, -4, 2)\), vector \(\mathbf{v} = (-2, -3, 1)\), and vector \(\mathbf{w} = (-5, -5, 4)\). Calculate \(\mathbf{r} = -2\mathbf{w} - 3(\mathbf{u} - 3\mathbf{v})\). Express your answer in component form.
       
    28. Let vector \(\mathbf{u} = -2\mathbf{j} - \mathbf{k}\), vector \(\mathbf{v} = 4\mathbf{i} - 5\mathbf{j} - 5\mathbf{k}\), and vector \(\mathbf{w} = -4\mathbf{i} + \mathbf{j} + 4\mathbf{k}\). Calculate \(\mathbf{r} = -3\mathbf{v}  - 2(\mathbf{u} - 2\mathbf{w})\). Express your answer in terms of the standard unit vectors.
       
    29. Find the norm of vector \(\mathbf{u} = (-1, 3, -5)\).
       
    30. Find the magnitude of vector \(\mathbf{w} = 4\mathbf{i} - 5\mathbf{j} - \mathbf{k}\).
       
    31. Find a unit vector \(\mathbf{u}\) pointing in the same direction as vector \(\mathbf{v} = (1, -4, 5)\). Express \(\mathbf{u}\) in component form.
       
    32. Normalize the vector \(\mathbf{v} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}\). Express your answer in terms of the standard unit vectors.
       
    33. Let vector \(\mathbf{w} = (-7, 1, 0)\). Calculate \(-5\mathbf{w}\). Express your answer in component form.
       
    34. Find a vector \(\mathbf{u}\) in the same direction as \(\mathbf{v} = 3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}\) with magnitude \(\|\mathbf{u}\| = 2\). Express your answer in terms of the standard unit vectors.
       
    35. Find the equation of the sphere that has a diameter with endpoints \((-2, -1, 5)\) and \((-6, 5, 3)\).

    7.2: Vectors in Three Dimensions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?