Skip to main content
Mathematics LibreTexts

7.3: The Dot Product

  • Page ID
    143596
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Let vector \(\mathbf{u} = (2, -3)\) and vector \(\mathbf{v} = (1, -4)\). Find \(\mathbf{u} \cdot \mathbf{v}\).
       
    2. Let vector \(\mathbf{a} = 3\mathbf{i} - 7\mathbf{j}\) and vector \(\mathbf{b} = -2\mathbf{j}\). Find \(\mathbf{a} \cdot \mathbf{b}\).
       
    3. Let vector \(\mathbf{v} = (-2, -1, 5)\) and vector \(\mathbf{w} = (2, 2, -4)\). Find \(\mathbf{v} \cdot \mathbf{w}\).
       
    4. Let vector \(\mathbf{p} = 2\mathbf{j} - 5\mathbf{k}\) and vector \(\mathbf{q} = -4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}\). Find \(\mathbf{p} \cdot \mathbf{q}\).
       
    5. Let vector \(\mathbf{u} = (-2, 4)\), vector \(\mathbf{v} = (-5, 5)\), and vector \(\mathbf{w} = (-1, 0)\). Evaluate \((\mathbf{u} \cdot \mathbf{v})\mathbf{w}\), if possible. If it is not possible, explain why not.
       
    6. Let vector \(\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}\), vector \(\mathbf{b} = -2\mathbf{i} - 5\mathbf{j}\), and vector \(\mathbf{c} = \mathbf{i} - 5\mathbf{j}\). Evaluate \(\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}\), if possible. If it is not possible, explain why not.
       
    7. Let vector \(\mathbf{r} = (3, 3, -1)\), vector \(\mathbf{s} = (0, 5, -3)\), and vector \(\mathbf{t} = (3, 0, 2)\). Evaluate \((\mathbf{r} \cdot \mathbf{s}) + \mathbf{t}\), if possible. If it is not possible, explain why not.
       
    8. Let vector \(\mathbf{x} = 2\mathbf{i} - \mathbf{k}\), vector \(\mathbf{y} = 2\mathbf{i} + 2\mathbf{j}\), and vector \(\mathbf{z} = -5\mathbf{i} - 5\mathbf{j} - 5\mathbf{k}\). Evaluate \((\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}\), if possible. If it is not possible, explain why not.
       
    9. Let \(\theta \in [0, \pi]\) be the angle between two vectors \(\mathbf{u}\) and \(\mathbf{v}\). Recalling that \(\mathbf{u} \cdot \mathbf{v} = \| \mathbf{u}\| \| \mathbf{v}\| \cos \theta\), what can you say about \(\theta\) if \( \mathbf{u} \cdot \mathbf{v} = 0\)? What can you say about \(\theta\) if \( \mathbf{u} \cdot \mathbf{v} > 0\)? What can you say about \(\theta\) if \( \mathbf{u} \cdot \mathbf{v} < 0\)?
       
    10. Find the measure of the angle between vector \(\mathbf{u} = (-1, 1, 2)\) and vector \(\mathbf{v} = (-3, 1, -2)\).
       
    11. Find the measure of the angle between vector \(\mathbf{a} = \mathbf{i} + \mathbf{j}\) and vector \(\mathbf{b} = \mathbf{j} - \mathbf{k}\).
       
    12. Find the measure of the angle between vector \(\mathbf{v} = (1, -2, 1)\) and vector \(\mathbf{w} = (1, 1, -2)\).
       
    13. Find a non-zero vector \(\mathbf{p} \in \mathbb{R}^2\) that is orthogonal to \(\mathbf{q} = 2\mathbf{i} - 3\mathbf{j}\). Does there exist another non-zero vector \(\mathbf{r} \in \mathbb{R}^2\), not parallel to \(\mathbf{p}\), that is also orthogonal to \(\mathbf{q}\)?
       
    14. Find a non-zero vector \(\mathbf{x} \in \mathbb{R}^3\) that is orthogonal to \(\mathbf{y} = (4, 1, -2)\). Does there exist another non-zero vector \(\mathbf{z} \in \mathbb{R}^3\), not parallel to \(\mathbf{x}\), that is also orthogonal to \(\mathbf{y}\)?
       
    15. Let vector \(\mathbf{a} = 4\mathbf{i} + 5\mathbf{j}\) and vector \(\mathbf{b} = -\mathbf{i} - 2\mathbf{j}\). Find \(\text{proj}_{\mathbf{b}} \mathbf{a}\), the projection of vector \(\mathbf{a}\) onto vector \(\mathbf{b}\).
       
    16. Let vector \(\mathbf{u} = (2, 2)\) and vector \(\mathbf{v} = (-5, 3)\). Decompose vector \(\mathbf{v}\) into the sum of a vector parallel to \(\mathbf{u}\) and a vector orthogonal to \(\mathbf{u}\).
       
    17. Let vector \(\mathbf{p} = -3\mathbf{i} + 2\mathbf{j} - \mathbf{k}\) and vector \(\mathbf{q} = 3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}\). Decompose vector \(\mathbf{p}\) into the sum of a vector parallel to \(\mathbf{q}\) and a vector orthogonal to \(\mathbf{q}\).

    7.3: The Dot Product is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?