Skip to main content
Mathematics LibreTexts

7.4: The Cross Product

  • Page ID
    143597
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Calculate the determinant of \(\begin{bmatrix}
      -4 & 1 \\
      -2 & -1 \\
      \end{bmatrix}\).
       
    2. Calculate the determinant of \(\begin{bmatrix}
      3 & -2 \\
      -6 & 4 \\
      \end{bmatrix}\).
       
    3. Calculate the determinant of \(\begin{bmatrix}
      -1 & 2 & 1 \\
      -3 & -3 & -3 \\
      -1 & -1 & -3
      \end{bmatrix}\).
       
    4. Calculate the determinant of \(\begin{bmatrix}
      2 & 0 & 2 \\
      2 & -3 & -3 \\
      -1 & -3 & 1
      \end{bmatrix}\).
       
    5. Calculate \(\mathbf{u} \times \mathbf{v}\) for \(\mathbf{u} = (1, 3, -3)\) and \(\mathbf{v} = (2, 2, 3)\). Express your answer in component form.
       
    6. Calculate \(\mathbf{a} \times \mathbf{b}\) for \(\mathbf{a} = 5\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\) and \(\mathbf{b} = 4\mathbf{i} + 3\mathbf{k}\). Express your answer in terms of the standard unit vectors.
       
    7. Let \(\mathbf{p} = (0, -4, -2)\) and \(\mathbf{q} = (5, 4, 2)\). Find a unit vector \(\mathbf{r}\) pointing in the same direction as \(\mathbf{p} \times \mathbf{q}\). Express your answer in component form.
       
    8. Let \(\mathbf{v} = -\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}\) and \(\mathbf{w} = 2\mathbf{i} - 4\mathbf{k}\). Find a unit vector \(\mathbf{u}\) pointing in the same direction as \(\mathbf{v} \times \mathbf{w}\). Express you answer in terms of the standard unit vectors.
       
    9. Let \(\mathbf{x} = (3, 5, -1)\) and \(\mathbf{y} = (-1, 3, -4)\), and let \(\theta \in [0, \pi]\) be the angle between \(\mathbf{x}\) and \(\mathbf{y}\). Calculate \(\sin \theta\) and \(\cos \theta\).
       
    10. Let \(\mathbf{a} = -4(\mathbf{i} + \mathbf{j})\) and \(\mathbf{b} = 3\mathbf{i} + \mathbf{j} - 5\mathbf{k}\), and let \(\theta \in [0, \pi]\) be the angle between \(\mathbf{a}\) and \(\mathbf{b}\). Calculate \(\sin \theta\) and \(\cos \theta\).
       
    11. For \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3\), is \(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})\) a well-defined expression? Why or why not?
       
    12. For \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3\), is \((\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}\) a well-defined expression? Why or why not? 
       
    13. For \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3\), is \(\mathbf{u} \times \mathbf{v} \times \mathbf{w}\) a well-defined expression? Why or why not?
       
    14. Consider points \(A(0, 3, 2)\), \(B(1, 1, -1)\), and \(C(2, -1, 0)\). Find the area of the parallelogram with adjacent sides \(\vec{AB}\) and \(\vec{AC}\).
       
    15. Consider points \(P(2, 3, 2)\), \(Q(-2, -3, 1)\), and \(R(2, 1, 1)\). Find the area of the parallelogram with adjacent sides \(\vec{PQ}\) and \(\vec{PR}\).
       
    16. Consider points \(R(0, 2)\), \(S(-1, 1)\), and \(T(-2, 3)\). Find the area of the parallelogram with adjacent sides \(\vec{RS}\) and \(\vec{RT}\).
       
    17. Find the volume of the parallelepiped with adjacent edges \(\mathbf{u} = (0, 1, 1)\), \(\mathbf{v} = (1, 2, -2)\), and \(\mathbf{w} = (0, 2, 3)\).
       
    18. Find the volume of the parallelepiped with adjacent edges \(\mathbf{a} = \mathbf{i} - 3\mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}\), and \(\mathbf{c} = 3(\mathbf{i} + \mathbf{j} - \mathbf{k})\).

    7.4: The Cross Product is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?