Skip to main content
Mathematics LibreTexts

9.5: The Chain Rule for Multivariable Functions

  • Page ID
    144345
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Suppose \(\nabla h(3, 0) = (-1, 5)\). Find \(\dfrac{d}{dt} h(2t + 3, t^2 - 4t)\biggr|_{t=0}\).
       
    2. Suppose \(\nabla f(0, 0) = (3, -1)\). Find \(\dfrac{d}{ds} f\Bigl(\ln(s^2), s^3 - 4s + 3\Bigr)\biggr|_{s = 1}\).
       
    3. Suppose \(\nabla f\left(\sqrt{2}, \dfrac{1}{\sqrt{2}}\right) = (3, -1)\). Find \(\dfrac{d}{d\theta} f\Bigl(\sec \theta \tan \theta, \sin \theta\Bigr)\biggr|_{\theta = \frac{3\pi}{4}}\).
       
    4. Suppose \(\nabla g(1, 1) = (3, 4)\). Find \(\dfrac{d}{dt} g\Bigl(3t^2 - 2, \ln t + 1\Bigr)\biggr|_{t = 1}\).
       
    5. Suppose \(\nabla h(0, -3, 1) = (1, 2, 3)\). Find \(\dfrac{d}{ds} h(2s^2 + s, s - 3, s^3 + 1)\biggr|_{s = 0}\).
       
    6. Suppose \(\nabla g\left(-7, -\dfrac{1}{4}\right) = (1, 0)\). Find \(\dfrac{\partial}{\partial u} g\left(3u - e^{u + v}, \dfrac{1}{u - v}\right)\biggr|_{(u, v) = (-2, 2)}\) and \(\dfrac{\partial}{\partial v} g\left(3u - e^{u + v}, \dfrac{1}{u - v}\right)\biggr|_{(u, v) = (-2, 2)}\).
       
    7. Suppose \(\nabla K(-2, -2) = (1, 3)\). Find \(\dfrac{\partial}{\partial u} K\left(uv, \dfrac{u}{v}\right)\biggr|_{(u, v) = (2, -1)}\) and \(\dfrac{\partial}{\partial v} K\left(uv, \dfrac{u}{v}\right)\biggr|_{(u, v) = (2, -1)}\).

    9.5: The Chain Rule for Multivariable Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?