Skip to main content
Mathematics LibreTexts

9.6: Directional Derivatives and the Gradient

  • Page ID
    144346
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Find the directional derivative of \(f(x, y) = xy\) at point \(P(-2, 0)\) in the direction of \(\mathbf{v} = \mathbf{i} + \sqrt{3}\,\mathbf{j}\).
       
    2. Find the directional derivative of \(g(x, y) = e^x\sin y\) at point \(Q\left(1, \dfrac{\pi}{4}\right)\) in the direction of \(\mathbf{u} = 4\mathbf{i} - 3\mathbf{j}\).
       
    3. Find the directional derivative of \(h(x, y) = \ln(x^2 + y^2)\) at point \(P(1, 2)\) in the direction of \(\mathbf{v} = (2, -5)\).
       
    4. Find the directional derivative of \(f(x, y, z) = y^2 + xz\) at point \(P(1, 2, 2)\) in the direction of \(\mathbf{u} = (2, -1, 2)\).
       
    5. The temperature of a thin plate in the \(xy\)-plane is \(T = x^2 + y^2\). How fast does the temperature change at the point \((1, 5)\) moving in the direction of \(\mathbf{v} = (\sqrt{3}, 1)\)?
       
    6. Suppose the density of a thin plate at the point \((x, y)\) is \(\rho(x, y) = \dfrac{1}{\sqrt{1 + x^2 + y^2}}\). Find the rate of change of the density at \((2, 1)\) in the direction \(\mathbf{u} = -\mathbf{j}\).
       
    7. In what direction does \(f(x, y) = x^2 + xy + y^2\) increase most rapidly at the point \(P(-5, -4)\)? In what direction does \(f(x, y)\) decrease most rapidly at \(P\)?
       
    8. In what direction does \(f(x, y) = \arctan\left(\dfrac{y}{x}\right)\) increase most rapidly at the point \(P(-9, 9)\)? In what direction does \(f(x, y)\) decrease most rapidly at \(P\)?
       
    9. Suppose the temperature at \((x, y, z)\) is given by \(T = xy + \sin(yz)\). In what direction should you go from point \((1, 1, 1)\) to decrease the temperature as quickly as possible?
       
    10. A bug is crawling on the surface of a hot plate. The temperature of the plate at point \((x, y)\) is given by \(T(x, y) = 100 - x^2 - 3y^3\).
       
      1. If the bug is at the point \((2, 1)\), in what direction should it move to cool off the fastest? How fast will the temperature drop in this direction?
         
      2. If the bug is at the point \((1, 3)\), in what direction should it move in order to maintain its temperature?
         
    11. The National Oceanic and Atmospheric Administration (NOAA) measures the atmospheric pressure inside a hurricane. The NOAA finds that the atmospheric pressure of the hurricane at point \((x, y, z)\) can be modeled by the function \(\displaystyle P(x, y, z) = 2^{2(55-z)/11}\left(1 - \dfrac{1}{10(1 + x^2 + y^2)}\right)\). At point \((20, 80, 10)\), in what direction does the atmospheric pressure increase the fastest?

    9.6: Directional Derivatives and the Gradient is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?