Skip to main content
Mathematics LibreTexts

10.3: Double Integrals in Polar Coordinates

  • Page ID
    144352
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1. Let \(R \subset \mathbb{R}^2\) be the portion of the disk of radius \(4\) centered at the origin that lies in the first quadrant. Express region \(R\) in polar coordinates.
       
    2. Let \(R \subset \mathbb{R}^2\) be the annulus that lies between the circles of radius \(1\) and radius \(2\). Express region \(R\) in polar coordinates.
       
    3. Let \(R \subset \mathbb{R}^2\) be the region in the first quadrant bounded by \(x^2 + y^2 = 1\), \(x^2 + y^2 = 9\), \(y = x\), and \(y = 0\). Express region \(R\) in polar coordinates.
       
    4. Let \(R \subset \mathbb{R}^2\) be the region bounded by \(y = x\), \(y = 0\), \(x = 1\), and \(x = 5\). Express region \(R\) in polar coordinates.
       
    5. Let \(R \subset \mathbb{R}^2\) be the region bounded by \(y = x\) and \(y = x^2\). Express region \(R\) in polar coordinates.
       
    6. Use polar coordinates to evaluate \(\displaystyle \iint_R (x^2 + y^2)\ dA\) over \(R = \{(r, \theta)\ |\ 3 \le r \le 5,\ 0 \le \theta \le 2\pi\}\).
       
    7. Use polar coordinates to evaluate \(\displaystyle \iint_R \sqrt[3]{x^2 + y^2}\ dA\) over \(R = \left\{(r, \theta)\ \big|\ 0 \le r \le 1,\ \dfrac{\pi}{2} \le \theta \le \pi\right\}\).
       
    8. Use polar coordinates to evaluate \(\displaystyle \iint_R \arctan\left(\dfrac{y}{x}\right)\ dA\) over \(R = \left\{(r, \theta)\ \big|\ 1 \le r \le 2,\ \dfrac{\pi}{4} \le \theta \le \dfrac{\pi}{3}\right\}\).
       
    9. Evaluate \(\displaystyle \int_0^3 \int_0^\sqrt{9-y^2} (x^2 + y^2)\ dx\,dy\) by converting to polar coordinates.
       
    10. Evaluate \(\displaystyle \int_0^4 \int_{-\sqrt{16 - x^2}}^\sqrt{16 - x^2} \sin(x^2 + y^2)\ dy\,dx\) by converting to polar coordinates.
       
    11. Evaluate \(\displaystyle \int_{-4}^4 \int_{-\sqrt{16 - y^2}}^0 (2y - x)\ dx\,dy\) by converting to polar coordinates.
       
    12. Evaluate \(\displaystyle \int_0^2 \int_y^\sqrt{8-y^2} (x+ y)\ dx\,dy\) by converting to polar coordinates.
       
    13. Evaluate \(\displaystyle \int_0^a \int_{-\sqrt{a^2 - x^2}}^0 x^2y\ dy\,dx\) by converting to polar coordinates.
       
    14. Evaluate \(\displaystyle \int_0^1 \int_{x^2}^x \dfrac{1}{\sqrt{x^2 + y^2}}\ dy\,dx\) by converting to polar coordinates.

    10.3: Double Integrals in Polar Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?