Skip to main content
Mathematics LibreTexts

10.3: Double Integrals in Polar Coordinates

  • Page ID
    144352
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Let \(R \subset \mathbb{R}^2\) be the portion of the disk of radius \(4\) centered at the origin that lies in the first quadrant. Express region \(R\) in polar coordinates.
       
    2. Let \(R \subset \mathbb{R}^2\) be the annulus that lies between the circles of radius \(1\) and radius \(2\). Express region \(R\) in polar coordinates.
       
    3. Let \(R \subset \mathbb{R}^2\) be the region in the first quadrant bounded by \(x^2 + y^2 = 1\), \(x^2 + y^2 = 9\), \(y = x\), and \(y = 0\). Express region \(R\) in polar coordinates.
       
    4. Let \(R \subset \mathbb{R}^2\) be the region bounded by \(y = x\), \(y = 0\), \(x = 1\), and \(x = 5\). Express region \(R\) in polar coordinates.
       
    5. Let \(R \subset \mathbb{R}^2\) be the region bounded by \(y = x\) and \(y = x^2\). Express region \(R\) in polar coordinates.
       
    6. Use polar coordinates to evaluate \(\displaystyle \iint_R (x^2 + y^2)\ dA\) over \(R = \{(r, \theta)\ |\ 3 \le r \le 5,\ 0 \le \theta \le 2\pi\}\).
       
    7. Use polar coordinates to evaluate \(\displaystyle \iint_R \sqrt[3]{x^2 + y^2}\ dA\) over \(R = \left\{(r, \theta)\ \big|\ 0 \le r \le 1,\ \dfrac{\pi}{2} \le \theta \le \pi\right\}\).
       
    8. Use polar coordinates to evaluate \(\displaystyle \iint_R \arctan\left(\dfrac{y}{x}\right)\ dA\) over \(R = \left\{(r, \theta)\ \big|\ 1 \le r \le 2,\ \dfrac{\pi}{4} \le \theta \le \dfrac{\pi}{3}\right\}\).
       
    9. Evaluate \(\displaystyle \int_0^3 \int_0^\sqrt{9-y^2} (x^2 + y^2)\ dx\,dy\) by converting to polar coordinates.
       
    10. Evaluate \(\displaystyle \int_0^4 \int_{-\sqrt{16 - x^2}}^\sqrt{16 - x^2} \sin(x^2 + y^2)\ dy\,dx\) by converting to polar coordinates.
       
    11. Evaluate \(\displaystyle \int_{-4}^4 \int_{-\sqrt{16 - y^2}}^0 (2y - x)\ dx\,dy\) by converting to polar coordinates.
       
    12. Evaluate \(\displaystyle \int_0^2 \int_y^\sqrt{8-y^2} (x+ y)\ dx\,dy\) by converting to polar coordinates.
       
    13. Evaluate \(\displaystyle \int_0^a \int_{-\sqrt{a^2 - x^2}}^0 x^2y\ dy\,dx\) by converting to polar coordinates.
       
    14. Evaluate \(\displaystyle \int_0^1 \int_{x^2}^x \dfrac{1}{\sqrt{x^2 + y^2}}\ dy\,dx\) by converting to polar coordinates.

    10.3: Double Integrals in Polar Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?