Skip to main content
Mathematics LibreTexts

10.4: Triple Integrals

  • Page ID
    144353
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Evaluate \(\displaystyle \iiint_B (2x + 3y^2 + 4z^3)\ dV\), where \(B = [0, 1] \times [0, 2] \times [0, 3]\).
       
    2. Evaluate \(\displaystyle \iiint_B (z\sin x + y^2)\ dV\), where \(B = [0, \pi] \times [0, 1] \times [-1, 2]\).
       
    3. Evaluate \(\displaystyle \iiint_E (2x + 5y - 7z)\ dV\), where \(E\) is the region in the first octant bounded by \(y = 1-x\), \(z = 1\), and \(z = 2\)
       
    4. Evaluate \(\displaystyle \iiint_E (y \ln x + z)\ dV\), where \(E\) is the region in the first octant bounded by \(y = \ln x\), \(x = 1\), \(x = e\), and \(z = 1\).
       
    5. Evaluate \(\displaystyle \iiint_E (x + 2yz)\ dV\), where \(E\) is the region in the first octant where \(x + y + z \leq 5\), \(y \leq x\), and \(x \leq 1\).
       
    6. Evaluate \(\displaystyle \iiint_E y\ dV\), where \(E\) is the unit sphere centered at the origin.
       
    7. Evaluate \(\displaystyle \iiint_E x^2\ dV\), where \(E\) is the region bounded by \(x = 1 - y^2\), \(x = y^2 - 1\), \(z = 1\), and \(z = 2\).
       
    8. Evaluate \(\displaystyle \iiint_E 2x\ dV\), where \(E\) is the region in the first octant bounded by \(x + y + z = 4\), \(y = 2x\), and \(x = 2\).
       
    9. Use a triple integral to find the volume of the region in the first octant bounded by the paraboloid \(z = 1 - x^2 - y^2\) and the planes \(y = x\) and \(x = 0\)

    10.4: Triple Integrals is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?