Skip to main content
Mathematics LibreTexts

10.1: Double Integrals over Rectangular Regions

  • Page ID
    144350
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Compute \(\displaystyle \int_0^2 \int_0^4 (1 + x)\ dy\,dx\).
       
    2. Compute \(\displaystyle \int_{-1}^1 \int_{-2}^2 (2x + 3y + 5)\ dx\,dy\).
       
    3. Compute \(\displaystyle \int_1^6 \int_2^9 \dfrac{\sqrt{y}}{x^2}\ dy\,dx\).
       
    4. Compute \(\displaystyle \int_{\ln 2}^{\ln 3} \int_0^1 e^{x+y}\ dy\,dx\).
       
    5. Compute \(\displaystyle \int_0^{\pi} \int_0^{\pi/2} \sin(2x)\cos(3y)\ dx\,dy\).
       
    6. Compute \(\displaystyle \int_1^e \int_1^e \dfrac{\sin(\ln x)\cos(\ln y)}{xy}\ dx\,dy\).
       
    7. Compute \(\displaystyle \int_0^1 \int_1^2 \dfrac{x}{x^2 + y^2}\ dy\,dx\).
       
    8. Find the volume under the surface \(z = xy\) and over rectangle \(R = [0, 2] \times [1, 3]\).
       
    9. Find the volume under the surface \(z = y^2\) and over rectangle \(R = [-2, 2] \times [-1, 4]\).
       
    10. Find the volume under the surface \(z = \dfrac{x\sqrt{4-x^2}}{y}\) and over rectangle \(R = [0, 2] \times [1, e]\).
       
    11. Sketch the solid whose volume is expressed as \(\displaystyle \iint_R x\ dA\), where \(R = [0, 5] \times [0, 5]\). Then use geometry to find the volume.
       
    12. Sketch the solid whose volume is expressed as \(\displaystyle \iint_R \sqrt{4 - y^2}\ dA\), where \(R = [0, 2] \times [0, 2]\). Then use geometry to find the volume.

    10.1: Double Integrals over Rectangular Regions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?