Skip to main content
Mathematics LibreTexts

10.5: Triple Integrals over Cylindrical and Spherical Coordinates

  • Page ID
    144354
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Use cylindrical coordinates to evaluate \(\displaystyle \iiint_R x^2\ dV\), where \(R\) is the interior of the cylinder \(x^2 + y^2 = 1\) between \(z = 0\) and \(z = 5\).
       
    2. Use cylindrical coordinates to evaluate \(\displaystyle \iiint_R (x^2 + y^2)\ dV\), where \(R\) is the interior of the sphere \(x^2 + y^2 + z^2 = 4\).
       
    3. Use spherical coordinates to evaluate \(\displaystyle \iiint_R (x^2 + y^2)\ dV\), where \(R\) is the interior of the sphere \(x^2 + y^2 + z^2 = 4\).
       
    4. Use spherical coordinates to evaluate \(\displaystyle \iiint_R yz\ dV\), where \(R\) is the region in the first octant inside \(x^2 + y^2 - 2z = 0\) and under \(x^2 + y^2 + z^2 = 4\).
       
    5. Use cylindrical coordinates or spherical coordinates to evaluate \(\displaystyle \int_0^1 \int_0^x \int_0^{\sqrt{x^2 + y^2}} \dfrac{(x^2 + y^2)^{3/2}}{x^2 + y^2 + z^2}\ dz\,dy\,dx\).
       
    6. Use cylindrical coordinates or spherical coordinates to evaluate \(\displaystyle \int_{-1}^1 \int_0^{\sqrt{1 - x^2}} \int_{\sqrt{x^2 + y^2}}^{\sqrt{2 - x^2 - y^2}} \sqrt{x^2 + y^2 + z^2}\ dz\,dy\,dx\).
       
    7. Use spherical coordinates and a triple integral to calculate the volume of the unit sphere.

    10.5: Triple Integrals over Cylindrical and Spherical Coordinates is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?