Skip to main content
Mathematics LibreTexts

11.2: Divergence and Curl

  • Page ID
    144362
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Find the divergence and the curl of \(\mathbf{F}(x, y, z) = xy^2z^4\,\mathbf{i} + (2x^2y + z)\,\mathbf{j} + y^3z^2\,\mathbf{k}\).
       
    2. Find the divergence and the curl of \(\mathbf{F}(x, y, z) = (x^2z, y^2x, y + 2z)\).
       
    3. Find the divergence and the curl of \(\mathbf{F}(x, y, z) = 3xyz^2\,\mathbf{i} + y^2\sin z\,\mathbf{j} + y^3z^2\,\mathbf{k}\).
       
    4. Find the divergence and the curl of \(\mathbf{F}(x, y, z) = (x^2yz, xy^2z, xyz^2)\) at \((x, y, z) = (2, 1, -1)\).
       
    5. Find the divergence and the scalar curl of \(\mathbf{F}(x, y) = (-y, x)\).
       
    6. Find the divergence and the scalar curl of \(\mathbf{F}(x, y) = \sin x\,\mathbf{i} + \cos y\,\mathbf{j}\).
       
    7. Find the divergence and the scalar curl of \(\mathbf{F}(x, y) = \dfrac{1}{\sqrt{x^2 + y^2}}(x, y)\) at \((x, y) = (1, -1)\).
       
    8. Let \(\mathbf{r} = (x, y, z)\) and \(r = \norm{\mathbf{r}}\). Find the divergence and curl of \(\dfrac{\mathbf{r}}{r}\).
       
    9. Let \(f: \mathbb{R}^3 \to \mathbb{R}\) have continuous second-order partial derivatives. Show that \(\nabla \times (\nabla f) = \mathbf{0}\).
       
    10. Let the component functions of \(\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3\) have continuous second-order partial derivatives. Show that \(\nabla \cdot (\nabla \times \mathbf{F}) = 0\).

    11.2: Divergence and Curl is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?