Skip to main content
Mathematics LibreTexts

11.3: Line Integrals

  • Page ID
    144359
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1. Evaluate \(\displaystyle \int_C xy^2\ ds\), where \(C\) is the line segment from \((1, 2, 0)\) to \((2, 1, 3)\).
       
    2. Evaluate \(\displaystyle \int_C (x + y)\ ds\), where \(C\) is the line segment from \((0, 1, 0)\) to \((1, 0, 0)\).
       
    3. Evaluate \(\displaystyle \int_C x^2yz\ ds\), where \(C\) is the curve \(\mathbf{r}(t) = (6t^3, 3t^2, t)\), \(0 \leq t \leq 1\).
       
    4. Evaluate \(\displaystyle \int_C \dfrac{y}{1 + x^2}\ ds\), where \(C\) is the curve \(\mathbf{r}(t) = t\mathbf{i} + (1 + 2t)\mathbf{j}\), \(0 \leq t \leq 1\).
       
    5. Evaluate \(\displaystyle \int_C \mathbf{F}\cdot d\mathbf{r}\), where \(\mathbf{F}(x, y) = (\sin x, \cos y)\), and \(C\) is the top half of the unit circle counterclockwise from \((1, 0)\) to \((-1, 0)\).
       
    6. Evaluate \(\displaystyle \int_C \mathbf{F}\cdot d\mathbf{r}\), where \(\mathbf{F}(x, y) = (\sin x, \cos y)\), and \(C\) is the top half of the unit circle clockwise from \((-1, 0)\) to \((1, 0)\).
       
    7. Evaluate \(\displaystyle \int_C (xe^y, x^2y) \cdot d\mathbf{r}\), where \(C\) is the curve \(\mathbf{r}(t) = (3t, t^2)\), \(0 \leq t \leq 1\).
       
    8. Evaluate \(\displaystyle \int_C \dfrac{1}{xy}\ dx + \dfrac{1}{x + y}\ dy\), where \(C\) is the path from \((1, 1)\) to \((3, 1)\) to \((3, 6)\).
       
    9. Evaluate \(\displaystyle \int_C x^2yz\ dx\), where \(C\) is the curve \(\mathbf{r}(t) = (6t^3, 3t^2, t)\), \(0 \leq t \leq 1\).
       
    10. Find the work done by the force field \(\mathbf{F}(x, y, z) = x\mathbf{i} + 3xy\mathbf{j} - (x + z)\mathbf{k}\) on a particle moving along a line segment that goes from \((1, 4, 2)\) to \((0, 5, 1)\).
       
    11. Find the work done by the force field \(\mathbf{F}(x, y, z) = (y, z, x)\) on an object that moves along the curve \(\mathbf{r}(t) = \left(\sqrt{t}, \dfrac{1}{\sqrt{t}}, t\right)\), \(1 \leq t \leq 4\).
       
    12. Compute the circulation of \(\mathbf{F}(x, y) = (-2, y)\) along the circle of radius \(2\) centered at the origin, oriented counterclockwise.
       
    13. Compute the flux of \(\mathbf{F}(x, y) = x^2\mathbf{i} + y\mathbf{j}\) across a line segment from \((0, 0)\) to \((1, 2)\).
       
    14. Compute the flux of \(\mathbf{F}(x, y) = (-y, x)\) across the unit circle centered at the origin, oriented counterclockwise.

    11.3: Line Integrals is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?