Skip to main content
Mathematics LibreTexts

8.2: Applications of Normal Random Variables

  • Page ID
    105846
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    When working with random variables we adopt the following vocabulary.

    Definition:

    We say that a certain population has or follows a normal distribution with parameters \(\mu\) and \(\sigma\) when the following is true:

    1. If we do the census, find the mean \(\mu\) and standard deviation \(\sigma\), and plot the histogram, then the shape of the distribution is a normal probability density curve with parameters \(\mu\) and \(\sigma\).
    2. If we let \(X\) be a randomly selected observation from such population then \(X \sim N(\mu,\sigma)\).

    Therefore, \(P(a<X<b)\), the probability that \(X\) is between \(a\) and \(b\) can be interpreted in the following two ways.

    • First, we can literally interpret it as the probability that a randomly selected value is between \(a\) and \(b\).
    • Alternatively, the same quantity represents the proportion of the population that has a value between \(a\) and \(b\).

    Similarly, \(P(X<c)\), the probability that \(X\) is less than \(c\) can be interpreted in the following two ways.

    • First, we can literally interpret it as the probability that a randomly selected value is less than \(c\).
    • Alternatively, the same quantity represents the proportion of the population that has a value less than \(c\).

    Finally, \(P(X>c)\), the probability that \(X\) is greater than \(c\) can be interpreted in the following two ways.

    • First, we can literally interpret it as the probability that a randomly selected value is greater than \(c\).
    • Alternatively, the same quantity represents the proportion of the population that has a value greater than \(c\).
    Example \(\PageIndex{1}\)

    Consider the heights of the males in the U.S. We may assume that the population of heights has a normal distribution with \(\mu=175\) cm and \(\sigma=15\) cm.

    1. Find the proportion of the population that is shorter than \(178\) cm.
    2. Find the probability that a randomly selected US male has the height between \(170\) cm and \(180\) cm.
    3. Find the \(75\)-th percentile of the population.
    Solution

    Let's introduce a random variable \(X\) to represent the height of a randomly selected male, then

    \(X \sim N(175,15)\)

    • \(P(X<178)=P(\frac{X-\mu}{\sigma}<\frac{178-175}{15})=P(Z<0.20)=0.579

    clipboard_e6a38171875a1548b12b2d527c12377c0.png

    • \(P(170<X<180)=P(\frac{170-175}{15}<\frac{X-\mu}{\sigma}<\frac{180-175}{15})=P(-0.33<Z<0.20)=P(Z<0.20)-P(Z<-0.33)=0.6293-0.3707=0.2586\)

    clipboard_ef6d41dda0dfffae4e10490202cbe9b27.png

    • \(x_{0.25}=\mu+z_{0.25}\sigma=175+0.67\cdot15=185.05\)

    clipboard_e9a69d3c1836841f9915e5c54f8e9e350.png

    Example \(\PageIndex{2}\)

    As reported in Runner’s World magazine, the times of the finishers in the New York City 10-km run are normally distributed with mean \(61\) minutes and standard deviation \(9\) minutes.

    1. Find the probability that a randomly selected runner finished in more than \(55\) minutes?
    2. What proportion of the runners finished in between \(60\) and \(70\) minutes?
    3. What is the \(10\)-th percentile of the finishing times?
    Solution

    Let's introduce a random variable \(X\) to represent the time of a randomly selected marathon finisher, then

    \(X \sim N(61,9)\)

    • \(P(X>55)=P(\frac{X-\mu}{\sigma}>\frac{55-61}{9})=P(Z>-0.67)=0.7486

    clipboard_e5aae904cc3909ef928a7482bb433ee08.png

    • \(P(60<X<70)=P(\frac{60-61}{9}<\frac{X-\mu}{\sigma}<\frac{70-61}{9})=P(-0.11<Z<1)=P(Z<1)-P(Z<-0.11)=0.8413-0.4562=0.3851\)

    clipboard_eea948f5a4379128bcca864502d0ebe9d.png

    • \(x_{0.90}=\mu+z_{0.90}\sigma=61+1.28\cdot9=72.52\)

    clipboard_e36914ff1dcd8f6110472edd4ae366c06.png


    8.2: Applications of Normal Random Variables is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?