Skip to main content
Mathematics LibreTexts

1.4.2: The Power Rules for Exponents

  • Page ID
    87278
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1.4.3 Learning Objectives

    • Use the Power Rule for Powers to simplify expressions involving exponents
    • Use the Power Rule for Products to simplify expressions involving exponents
    • Use the Power Rule for Quotients to simplify expressions involving exponents

    The Power Rule for Powers

    The following examples suggest a rule for raising a power to a power:

    \((a^2)^3 = a^2 \cdot a^2 \cdot a^2\)
    Using the product rule we get:
    \((a^2)^3 = a^{2+2+2}\)
    \((a^2)^3 = a^{3 \cdot 2}\)
    \((a^2)^3 = a^6\)

    \((x^9)^4 = x^9 \cdot x^9 \cdot x^9 \cdot x^9\)
    \((x^9)^4 = x^{9+9+9+9}\)
    \((x^9)^4 = x^{4 \cdot 9}\)
    \((x^9)^4 = x^{36}\)

    Power Rule for Powers

    If \(x\) is a real number and \(n\) and \(m\) are natural numbers,
    \((x^n)^m = x^{n \cdot m}\)

    To raise a power to a power, multiply the exponents.

     

    Example 1

    Simplify each expression using the power rule for powers. All exponents are natural numbers.

    1. \((7^3)^4 = 7^{3 \cdot 4} = 7^{12}\)
    2. \((y^5)^3 = y^{5 \cdot 3} = y^{15}\)
    3. \((d^{20})^6 = d^{20 \cdot 6} = d^{120}\)

     

    Try It Now 1

    Simplify the expression using the power rule for powers.

    \((8^5)^4\)

    Answer

    \(8^{20}\)

    Try It Now 2

    Simplify the expression using the power rule for powers.

    \((y^7)^7\)

    Answer

    \(y^{49}\)

    The Power Rule for Products

    The following examples suggest a rule for raising a product to a power:

    \(
    \begin{aligned}
    &(a b)^{3}=a b \cdot a b \cdot a b \text { Use the commutative property of multiplication. }\\
    &\begin{array}{l}
    =a a a b b b \\
    =a^{3} b^{3}
    \end{array}
    \end{aligned}
    \)

    \(
    \begin{aligned}
    (x y)^{5} &=x y \cdot x y \cdot x y \cdot x y \cdot x y \\
    &=x x x x x \cdot \text { yyyyy } \\
    &=x^{5} y^{5}
    \end{aligned}
    \)

    \(
    \begin{aligned}
    (4 x y \mathrm{z})^{2} &=4 x y z \cdot 4 x y z \\
    &=4 \cdot 4 \cdot x x \cdot y y \cdot z z \\
    &=16 x^{2} y^{2} z^{2}
    \end{aligned}
    \)

    Power Rule for Products

    If \(x\) and \(y\) are real numbers are \(n\) is a natural number,
    \((xy)^n = x^ny^n\)

    To raise a product to a power, apply the exponent rule to each and every factor

     

    Example 2

    Make use of either the power rule for products or power rule for powers to simplify each expression.

    1. \((2b)^7 = 2^7b^7\)
    2. \((axy)^4 = a^4x^4y^4\)
    3. \((3ab)^2 = 3^2a^2b^2 = 9a^2b^2\)

      Don't forget to apply the exponent to the 3!

    Example 3

    Make use of both the power rule for products and power rule for powers to simplify each expression.

    1. \((ab^3)^2 = a^2(b^3)^2 = a^2b^6\)

      We used two rules here. First, the power rule for products. Second, the power rule for powers.

    2. \((7a^4b^2c^8)^2 = 7^2(a^4)^2(b^2)^2(c^8)^2 = 49a^8b^4c^{16}\)
    3. \([2(x+1)^4]^6 = 2^6(x+1)^{24} = 64(x+1)^{24}\)

     

    Example 4

    If \(6a^3c^7 \not = 0\), then \((6a^3c^7)^0 = 1\). Recall that \(x^0 = 1\) for \(x \not = 0\)

     

    The Power Rule for Quotients

    The following example suggests a rule for raising a quotient to a power.

    \((\dfrac{a}{b})^3 = \dfrac{a}{b} \cdot \dfrac{a}{b} \cdot \dfrac{a}{b} = \dfrac{a \cdot a \cdot a}{b \cdot b \cdot b} = \dfrac{a^3}{b^3}\)

    Power Rule for Quotients

    If \(x\) and \(y\) are real numbers and \(n\) is a natural number,

    \((\dfrac{x}{y})^n = \dfrac{x^n}{y^n}, y \not = 0\)

    To raise a quotient to a power, distribute the exponent to both the numerator and denominator.

     

    Example 5

    Make use of the power rule for quotients, the power rule for products, the power rule for powers, or a combination of these rules to simplify each expression. All exponents are natural numbers.

    1. \((\dfrac{x}{y})^6 = \dfrac{x^6}{y^6}\)
    2. \((\dfrac{2x}{b})^4 = \dfrac{(2x)^4}{b^4} = \dfrac{2^4x^4}{b^4} = \dfrac{16x^4}{b^4}\)
    3. \((\dfrac{a^3}{b^5})^7 = \dfrac{(a^3)^7}{(b^5)^7} = \dfrac{a^21}{b^35}\)

     


    This page titled 1.4.2: The Power Rules for Exponents is shared under a CC BY license and was authored, remixed, and/or curated by Leah Griffith, Veronica Holbrook, Johnny Johnson & Nancy Garcia.