3.7: Exercises - Double Angle, Half-Angle, and Power Reductions
( \newcommand{\kernel}{\mathrm{null}\,}\)
Chapter 3 Practice:
1. If sin(x)=18 and x is in quadrant I, then find exact values for (without solving for x):
a. sin(2x)
b. cos(2x)
c. tan(2x)
2. If cos(x)=23 and x is in quadrant I, then find exact values for (without solving for x):
a. sin(2x)
b. cos(2x)
c. tan(2x)
Simplify each expression.
3. cos2(28∘)−sin2(28∘)
4. 2cos2(37∘)−1
5. 1−2sin2(17∘)
6. cos2(37∘)−sin2(37∘)
7. cos2(9x)−sin2(9x)
8. cos2(6x)−sin2(6x)
9. 4sin(8x)cos(8x)
10. 6sin(5x)cos(5x)
Solve for all solutions on the interval [0,2π).
11. 6sin(2t)+9sin(t)=0
12. 2sin(2t)+3cos(t)=0
13. 9cos(2θ)=9cos2(θ)−4
14. 8cos(2α)=8cos2(α)−1
15. sin(2t)=cos(t)
16. cos(2t)=sin(t)
17. cos(6x)−cos(3x)=0
18. sin(4x)−sin(2x)=0
Use a double angle, half angle, or power reduction formula to rewrite without exponents.
19. cos2(5x)
20. cos2(6x)
21. sin4(8x)
22. sin4(3x)
23. cos2xsin4x
24. cos4xsin2x
25. If csc(x)=7 and 90∘<x<180∘, then find exact values for (without solving for x):
a. sin(x2)
b. cos(x2)
c. tan(x2)
26. If sec(x)=4 and 270∘<x<360∘, then find exact values for (without solving for x):
a. sin(x2)
b. cos(x2)
c. tan(x2)
Prove the identity.
27. (sint−cost)2=1−sin(2t)
28. (sin2x−1)2=cos(2x)+sin4x
29. sin(2x)=2tan(x)1+tan2(x)
30. tan(2x)=2sin(x)cos(x)2cos2(x)−1
31. cot(x)−tan(x)=2cot(2x)
32. sin(2θ)1+cos(2θ)=tan(θ)
33. cos(2α)=1−tan2(α)1+tan2(α)
34. 1+cos(2t)sin(2t)−cos(t)=2cos(t)2sin(t)−1
35. sin(3x)=3sin(x)cos2(x)−sin3(x)
36. cos(3x)=cos3(x)−3sin2(x)cos(x)
- Answer
-
1. a. 3√732
b. 3132
c. 3√7313. cos(56∘)
5. cos(34∘)
7. cos(18x)
9. 2sin(16x)
11. 0, π, 2.4189,3.8643
13. 0.7297, 2.4119, 3.8713, 5.5535
15. π6, π2, 5π6, 3π2
17. a. 2π9, 4π9, 8π9, 10π9, 14π9, 16π9, 0, 2π3, 4π3
19. 1+cos(10x)2
21. 38−12cos(16x)+18cos(32x)
23. 116−116cos(2x)+116cos(4x)−116cos(2x)cos(4x)
25. a. √12+2+√77
b. √12−2+√77
c. 17−4√3