Skip to main content
Mathematics LibreTexts

15.1: Double and Iterated Integrals over Rectangles

  • Page ID
    2643
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    \[ y=f(x)=e^{-5x^2} , 0\leq x \leq 1 \nonumber \]

    15.1ex1.jpg
    Figure 15.1-0

    \[ \int_a^b f(x)\;dx = \lim_{n\rightarrow\infty}\sum_{i=1}^n f(x_i)\, \Delta x_i \nonumber \]

    A fundamental method to calculate the area: the base of function f(x) is equally divide into n pieces whose width are \( \Delta x \). Then \( S=\Delta x f(x_i) \) is the area of the rectangle at the location \(\Delta x_i\) and its height is \(f(x_i)\) among the range \( \Delta x_i\). Through summing all these rectangular pieces together, we can roughly estimate the area under the function \( f(x) \) in its domain. The equation \( \sum_{i=1}^n f(x_i)\, \Delta x_i \) can be used to represent this process.

    However, \( \sum_{i=1}^n f(x_i)\, \Delta x_i \) can only help us to estimate the value, which means errors still exist. In this case, limits help us to fix the problem.

    15.1_001.jpg 15.1_002.jpg

    15.1_003.jpg 15.1_004.jpg

    figure 15.1-1

    As it was mentioned, the area was divided into n stripes. As \( n \rightarrow \infty \) and \(\Delta x \rightarrow 0\), stripes\( \Delta x f(x_i) \)approachs to a line whose length is equal to the height of \( f(x_i) \). Eventually, through infinite division and accumulation, the error is reduced to zero and the sum of \( f(x) \Delta x\) equals to the area under the curve.

    \[ \int_a^b f(x)\;dx = \lim_{n\rightarrow\infty}\sum_{i=1}^n f(x_i)\, \Delta x_i \nonumber \]

    Thus, we can conclude that the integral is the function of accumulation as it accumulates infinite number of strips in a certain domain to calculate the area. Similarly, the double integral is also a function of accumulation. It accumulates infinite number of small 3D strips to calculate the volume of 3D objects.

    \[ V=\int \int_R f(x_i,y_i) dx= \lim_{n\rightarrow\infty}\sum_{k=1}^n f(x_i,y_i)\Delta A_i \nonumber \]

    \(R\) is the domain of the function (the area that you want to integrate over)

    Explanation:as \(n \rightarrow \infty\), the number of strips goes to infinity, \(\Delta A \rightarrow\infty\), the error of calculation goes to 0 and the accumulation of these infinite strips eventually equals the volume of the objects.

    Theoretical discussion with descriptive elaboration

    Theorem: Fubini's Theorem (First Form)

    If \( f(x,y) \) is contunuous throughout the rectangular region R: \(a\leq x \leq b, c\leq y \leq d,\)

    then

    \[\int \int_R f(x,y)\Delta A=\int_c^d \int_a^b f(x,y)\Delta x \Delta y= \int_a^b \int_c^d f(x,y)\Delta y \Delta x. \nonumber \]

    Fubini's Theorem is usually used to calculate the volume of three dimensional bodies

    15.1 ex.2-4_Jiaming.jpg
    Figure 15.1-2

    \[ V_i= f(x_i,y_i) \Delta A_i= f(x_i,y_i)\Delta x \Delta y \nonumber \]

    In figure 15.1-2 , \( f(x_i,y_i) \) is the height of the cuboid and \( \Delta A \) is its base. \( V_i \) means that at different location, there is a corresponding cuboid whose height is closed to the average height of the graph at the area \( \Delta A_i \).

    15.1 ex.2-6_Jiaming.jpg
    Figure 15.1-3

    At the specific \( \Delta y_i \), the cuboids with different \(\Delta x_i \) are lined up to form a layer.

    15.1 ex.2-7.jpg
    Figure 15.1-4

    \[ V= \sum_{i=1}^n f(x_i,y_i) \, \Delta A_i=\sum_{i=1}^n f(x_i,y_i)\Delta x_i \Delta y_i \nonumber \]

    As all the layers are combined together, we get a body that is approximated to the one in the next graph, but the error is still very large.

    15.1 ex.2-8.jpg
    Figure 15.1-5

    \[ V=\lim_{n\rightarrow \infty } \sum_{i=1}^n f(x_i,y_i) \, \Delta A_i \nonumber \]

    Limit helps to solve this problem. As n goes to infinity, \( \Delta A_i \) becomes smaller eventually turns to a dot. \( f(x_i, y_i) \Delta A_i \) becomes a line and error of volume decreases to zero. Thus, the accumulation of all these lines equal to the volume.

    Example 1

    Now we can calculate the volume below the function \( f(x,y)=27-x^2-\frac{1}{2}y^2dx dy \) and above \( f(x,y) \), in the domain \( 0\leq x \leq 3 \) and \( 0 \leq y \leq 6 \).

    \[\begin{align} & \int_0^6 \int_0^3 27-x^2-\frac{1}{2} y^2dx dy \\ & =\int_0^6 (27-\frac{1}{2}y^2)x-\frac{1}{3}x^3 \Big|_0^3 dy \\ & =\int_0^6 [(27-\frac{1}{2}y^2)\times3-\frac{1}{3}\times 3^3 \\ & =\int_0^6 72-\frac{3}{2}y^2 \ dy \\ & =[72y-\frac{1}{2}y^3]\Big|_0^6 \\ & = (72\times 6-\frac{1}{2}\times6^3)-(0-0) \\ & = 324 \end{align} \nonumber \]

    15.1 ex.2-6_Jiaming.jpg15.1 ex.2-8.jpg

    Figure: (left) from step 1 to step 3 (right) from step 3 to step 6

    Example 2

    Another way to calculate the volume of the graph:

    \[\begin{align} &\int_0^3 \int_0^6 27-x^2-\frac{1}{2} y^2dy dx \\ & = \int_0^3 (27-x^2)y-\frac{1}{6}y^3 \Big|_0^6 \ dx \\ & =\int_0^3 [(27-x^2)\times 6 -\frac{1}{6}\times6^3]-[0-0]\ dx \\ & =\int_0^3 126-6x^2\ dx \\ & = [126x-2x^3]\Big|_0^3 \\ & = (126\times3-2\times 3^3 )-(0-0) \\ & = 324. \end{align} \nonumber \]

    Reminder: the positions of \( \Delta x \) and \( \Delta y \) are different. So are the positions of their domains.
    Example 3

    Find the volume that is bounded above by the surface \(z=f(x,y)=x^2+y^2\) and below by a rectangule R: \(0\leq x \leq 2, 0\leq y \leq 3 \).

    \[\begin{align} & \int_0^2 \int_0^3 x^2+y^2 dy dx \\ & =\int_0^2 x^2y+\frac{1}{3}y^3 \Big|_0^3 dx \\ & =\int_0^2 3x^2+9 dx \\ & =x^3+9x\Big|_0^2 \\ & =(8+18)-0 \\ & =26 \end{align} \nonumber \]

    Contributors and Attributions

    Integrated by Justin Marshall.


    15.1: Double and Iterated Integrals over Rectangles is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?