Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 8 results
  • https://math.libretexts.org/Bookshelves/Algebra/Elementary_Algebra_(Ellis_and_Burzynski)/03%3A_Basic_Operations_with_Real_Numbers/3.07%3A_Negative_Exponents
    Then, since \(x^{-3}\) and \(\dfrac{1}{x^3}\) are both reciprocals of \(x^3\) and a real number can have only one reciprocal, it must be that \(x^{-3} = \dfrac{1}{x^3}\). In a fraction, a factor can b...Then, since \(x^{-3}\) and \(\dfrac{1}{x^3}\) are both reciprocals of \(x^3\) and a real number can have only one reciprocal, it must be that \(x^{-3} = \dfrac{1}{x^3}\). In a fraction, a factor can be moved from the numerator to the denominator or from the denominator to the numerator by changing the sign of the exponent. \dfrac{24 a^{7} b^{9}}{2^{3} a^{4} b^{-6}}=\dfrac{24 a^{7} b^{9}}{8 a^{4} b^{-6}} &=3 a^{7-4} b^{9-(-6)} \\
  • https://math.libretexts.org/Bookshelves/PreAlgebra/Pre-Algebra_II_(Illustrative_Mathematics_-_Grade_8)/07%3A_Exponents_and_Scientific_Notation/7.02%3A_New_Page/7.2.6%3A_Practice_with_Rational_Bases
    We also extended these rules to make sense of negative exponents as repeated factors of the reciprocal of the base, as well as defining a number to the power of 0 to have a value of 1. \[x^{n}\cdot x^...We also extended these rules to make sense of negative exponents as repeated factors of the reciprocal of the base, as well as defining a number to the power of 0 to have a value of 1. \[x^{n}\cdot x^{m}=x^{n+m},\qquad (x^{n})^{m}=x^{n\cdot m},\qquad\frac{x^{n}}{x^{m}}=x^{n-m},\qquad x^{-n}=\frac{1}{x^{n}},\quad\text{and}\quad x^{0}=1\nonumber\] For example, the reciprocal of 12 is \(\frac{1}{12}\), and the reciprocal of \(\frac{2}{5}\) is \(\frac{5}{2}\).
  • https://math.libretexts.org/Bookshelves/Applied_Mathematics/Developmental_Math_(NROC)/02%3A_Fractions_and_Mixed_Numbers/2.02%3A_Multiplying_and_Dividing_Fractions_and_Mixed_Numbers/2.2.02%3A_Dividing_Fractions_and_Mixed_Numbers
    The fractional parts of this answer and the original mixed number are reciprocals, but in order to find the reciprocal of the entire number, you must write the mixed number as an improper fraction bef...The fractional parts of this answer and the original mixed number are reciprocals, but in order to find the reciprocal of the entire number, you must write the mixed number as an improper fraction before interchanging numerator and denominator. An easy way to remember how to divide fractions is the phrase “keep, change, flip”. This means to KEEP the first number, CHANGE the division sign to multiplication, and then FLIP (use the reciprocal) of the second number.
  • https://math.libretexts.org/Courses/Fullerton_College/Math_100%3A_Liberal_Arts_Math_(Claassen_and_Ikeda)/10%3A_Appendix/10.02%3A_Fractions_and_Mixed_Numbers/10.2.02%3A_Multiplying_and_Dividing_Fractions_and_Mixed_Numbers/10.2.2.02%3A_Dividing_Fractions_and_Mixed_Numbers
    The fractional parts of this answer and the original mixed number are reciprocals, but in order to find the reciprocal of the entire number, you must write the mixed number as an improper fraction bef...The fractional parts of this answer and the original mixed number are reciprocals, but in order to find the reciprocal of the entire number, you must write the mixed number as an improper fraction before interchanging numerator and denominator. An easy way to remember how to divide fractions is the phrase “keep, change, flip”. This means to KEEP the first number, CHANGE the division sign to multiplication, and then FLIP (use the reciprocal) of the second number.
  • https://math.libretexts.org/Courses/Santiago_Canyon_College/HiSet_Mathematica_(Lopez)/17%3A_Operaciones_Basicas_con_Numeros_Reales/17.07%3A_Exponentes_negativos
    Eso también lo sabemos\(x^3 \cdot \dfrac{1}{x^3} = 1\). (Ver problema 6 anterior.) Así,\(x^3\) y también\(\dfrac{1}{x^3}\) son recíprocos. Entonces, dado que\(x^{-3}\) y\(\dfrac{1}{x^3}\) son ambos re...Eso también lo sabemos\(x^3 \cdot \dfrac{1}{x^3} = 1\). (Ver problema 6 anterior.) Así,\(x^3\) y también\(\dfrac{1}{x^3}\) son recíprocos. Entonces, dado que\(x^{-3}\) y\(\dfrac{1}{x^3}\) son ambos recíprocos de\(x^3\) y un número real puede tener sólo un recíproco, debe ser eso\(x^{-3} = \dfrac{1}{x^3}\). \ dfrac {24 a^ {7} b^ {9}} {2^ {3} a^ {4} b^ {-6}} =\ dfrac {24 a^ {7} b^ {9}} {8 a^ {4} b^ {-6}} &=3 a^ {7-4} b^ {9- (-6)}\
  • https://math.libretexts.org/Bookshelves/PreAlgebra/Prealgebra_(Arnold)/04%3A_Fractions/4.04%3A_Dividing_Fractions
    \[ \begin{aligned} - \frac{6}{35} \div \frac{33}{55} = - \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ = - \frac{6 \cdot 55}{35 \cdot 33} ~ & \t...\[ \begin{aligned} - \frac{6}{35} \div \frac{33}{55} = - \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ = - \frac{6 \cdot 55}{35 \cdot 33} ~ & \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \\ = - \frac{(2 \cdot 3) \cdot (5 \cdot 11)}{(5 \cdot 7) \cdot (3 \cdot 11)} ~ & \textcolor{red}{ \text{ Factor numerators and denominators.}} \\ = - \frac{2 \cdot \cancel{3} \cdot \cancel{5} \cdot \cancel{11}}{ \cancel{5} \cdot 7 …
  • https://math.libretexts.org/Courses/Western_Technical_College/PrePALS_Math_with_Business_Apps/02%3A_Fractions/2.03%3A_Dividing_Fractions
    \[ \begin{aligned} - \frac{6}{35} \div \frac{33}{55} = - \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ = - \frac{6 \cdot 55}{35 \cdot 33} ~ & \t...\[ \begin{aligned} - \frac{6}{35} \div \frac{33}{55} = - \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ = - \frac{6 \cdot 55}{35 \cdot 33} ~ & \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \\ = - \frac{(2 \cdot 3) \cdot (5 \cdot 11)}{(5 \cdot 7) \cdot (3 \cdot 11)} ~ & \textcolor{red}{ \text{ Factor numerators and denominators.}} \\ = - \frac{2 \cdot \cancel{3} \cdot \cancel{5} \cdot \cancel{11}}{ \cancel{5} \cdot 7 …
  • https://math.libretexts.org/Courses/Western_Technical_College/PrePALS_PreAlgebra/02%3A_Fractions/2.03%3A_Dividing_Fractions
    \[ \begin{aligned} - \frac{6}{35} \div \frac{33}{55} = - \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ = - \frac{6 \cdot 55}{35 \cdot 33} ~ & \t...\[ \begin{aligned} - \frac{6}{35} \div \frac{33}{55} = - \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ = - \frac{6 \cdot 55}{35 \cdot 33} ~ & \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \\ = - \frac{(2 \cdot 3) \cdot (5 \cdot 11)}{(5 \cdot 7) \cdot (3 \cdot 11)} ~ & \textcolor{red}{ \text{ Factor numerators and denominators.}} \\ = - \frac{2 \cdot \cancel{3} \cdot \cancel{5} \cdot \cancel{11}}{ \cancel{5} \cdot 7 …

Support Center

How can we help?