Skip to main content
Mathematics LibreTexts

2.3: Dividing Fractions

  • Page ID
    137905
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Suppose that you have four pizzas and each of the pizzas has been sliced into eight equal slices. Therefore, each slice of pizza represents 1/8 of a whole pizza.

    Screen Shot 2019-08-30 at 2.22.06 PM.png
    Figure \(\PageIndex{1}\): One slice of pizza is 1/8 of one whole pizza.

    Now for the question: How many one-eighths are there in four? This is a division statement. To find how many one-eighths there are in 4, divide 4 by 1/8. That is,

    Number of one-eighths in four = 4 ÷ \(\frac{1}{8}\).

    On the other hand, to find the number of one-eights in four, Figure \(\PageIndex{1}\) clearly demonstrates that this is equivalent to asking how many slices of pizza are there in four pizzas. Since there are 8 slices per pizza and four pizzas,

    Number of pizza slices = 4 · 8.

    The conclusion is the fact that 4 ÷ (1/8) is equivalent to 4 · 8. That is,

    \[\begin{align*} 4 ÷ 1/8 &= 4 \cdot 8 \\[4pt] &= 32. \end{align*}\]

    Therefore, we conclude that there are 32 one-eighths in 4.

    Reciprocals

    The number 1 is still the multiplicative identity for fractions.

    Multiplicative Identity Property

    Let a/b be any fraction. Then,

    \[ \frac{a}{b} \cdot 1 = \frac{a}{b} \text{ and } 1 \cdot \frac{a}{b} = \frac{a}{b}.\nonumber \]

    The number 1 is called the multiplicative identity because the identical number is returned when you multiply by 1.

    Next, if we invert 3/4, that is, if we turn 3/4 upside down, we get 4/3. Note what happens when we multiply 3/4 by 4/3.

    The number 4/3 is called the multiplicative inverse or reciprocal of 3/4. The product of reciprocals is always 1.

    Multiplicative Inverse Property

    Let a/b be any fraction. The number b/a is called the multiplicative inverse or reciprocal of a/b. The product of reciprocals is 1.

    \[ \frac{a}{b} \cdot \frac{b}{a} = 1\nonumber \]

    Note: To find the multiplicative inverse (reciprocal) of a number, simply invert the number (turn it upside down).

    For example, the number 1/8 is the multiplicative inverse (reciprocal) of 8 because

    \[ 8 \cdot \frac{1}{8} = 1.\nonumber \]

    Note that 8 can be thought of as 8/1. Invert this number (turn it upside down) to find its multiplicative inverse (reciprocal) 1/8.

    Example \(\PageIndex{1}\)

    Find the multiplicative inverses (reciprocals) of: (a) 2/3, (b) −3/5, and (c) −12.

    Solution

    a) Because

    \[ \frac{2}{3} \cdot \frac{3}{2} = 1,\nonumber \]

    the multiplicative inverse (reciprocal) of 2/3 is 3/2.

    b) Because

    \[ - \frac{3}{5} \cdot \left( - \frac{5}{3} \right) = 1,\nonumber \]

    the multiplicative inverse (reciprocal) of −3/5 is −5/3. Again, note that we simply inverted the number −3/5 to get its reciprocal −5/3.

    c) Because

    \[ -12 \cdot \left( - \frac{1}{12} \right) = 1, \nonumber \]

    the multiplicative inverse (reciprocal) of −12 is −1/12. Again, note that we simply inverted the number −12 (understood to equal −12/1) to get its reciprocal −1/12.

    Exercise \(\PageIndex{1}\)

    Find the reciprocals of: (a) −3/7 and (b) 15

    Answer

    (a) −7/3, (b) 1/15

    Division

    Recall that we computed the number of one-eighths in four by doing this calculation:

    \[ \begin{align*} 4 ÷ \frac{1}{8} &= 4 · 8 \\[4pt] &= 32.\end{align*}\]

    Note how we inverted the divisor (second number), then changed the division to multiplication. This motivates the following definition of division.

    Division Definition

    If a/b and c/d are any fractions, then

    \[ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}.\nonumber \]

    That is, we invert the divisor (second number) and change the division to multiplication. Note: We like to use the phrase “invert and multiply” as a memory aid for this definition.

    Example \(\PageIndex{2}\)

    Divide 1/2 by 3/5.

    Solution

    To divide 1/2 by 3/5, invert the divisor (second number), then multiply.

    \[ \begin{align*} \frac{1}{2} \div \frac{3}{5} &= \frac{1}{2} \cdot \frac{5}{3} ~ && \textcolor{red}{ \text{ Invert the divisor (second number).}} \\[4pt] &= \frac{5}{6} ~&& \textcolor{red}{ \text{ Multiply.}} \end{align*}\]

    Exercise \(\PageIndex{2}\)

    Divide:

    \[ \frac{2}{3} \div \frac{10}{3}\nonumber \]

    Answer

    1/5

    Example \(\PageIndex{3}\)

    Simplify the following expressions: (a) 3 ÷ \(\frac{2}{3}\) and (b) \(\frac{4}{5}\) ÷ 5.

    Solution

    In each case, invert the divisor (second number), then multiply.

    a) Note that 3 is understood to be 3/1.

    \[ \begin{align*} 3 \div \frac{2}{3} &= \frac{3}{1} \cdot \frac{3}{2} ~ && \textcolor{red}{ \text{ Invert the divisor (second number).}} \\[4pt] &= \frac{9}{2} ~ && \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \end{align*} \]

    b) Note that 5 is understood to be 5/1.

    \[ \begin{align*} \frac{4}{5} \div 5 &= \frac{4}{5} \cdot \frac{1}{5} ~ && \textcolor{red}{ \text{ Invert the divisor (second number).}} \\[4pt] &= \frac{4}{25} ~ && \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \end{align*}\]

    Exercise \(\PageIndex{3}\)

    Divide:

    \[ \frac{15}{7} \div 5\nonumber \]

    Answer

    \(\frac{3}{7}\)

    After inverting, you may need to factor and cancel, as we learned to do in Section 4.2.

    Example \(\PageIndex{4}\)

    Divide −6/35 by 33/55.

    Solution

    Invert, multiply, factor, and cancel common factors.

    \[ \begin{aligned} - \frac{6}{35} \div \frac{33}{55} = - \frac{6}{35} \cdot \frac{55}{33} ~ & \textcolor{red}{ \text{ Invert the divisor (second number).}} \\ = - \frac{6 \cdot 55}{35 \cdot 33} ~ & \textcolor{red}{ \text{ Multiply numerators; multiply denominators.}} \\ = - \frac{(2 \cdot 3) \cdot (5 \cdot 11)}{(5 \cdot 7) \cdot (3 \cdot 11)} ~ & \textcolor{red}{ \text{ Factor numerators and denominators.}} \\ = - \frac{2 \cdot \cancel{3} \cdot \cancel{5} \cdot \cancel{11}}{ \cancel{5} \cdot 7 \cdot \cancel{3} \cdot \cancel{11}} ~ & \textcolor{red}{ \text{ Cancel common factors.}} \\ = - \frac{2}{7} ~ & \textcolor{red}{ \text{ Remaining factors.}} \end{aligned}\nonumber \]

    Note that unlike signs produce a negative answer.

    Exercise \(\PageIndex{4}\)

    Divide:

    \[ \frac{6}{15} \div \left( - \frac{42}{35} \right)\nonumber \]

    Answer

    -1/3

    Of course, you can also choose to factor numerators and denominators in place, then cancel common factors.

     

    Exercises

    Find the reciprocal of the given number.

    1. 16/5

    3. −17

    5. −15/16

    7. 30


    Determine which property of multiplication is depicted by the given identity.

    19. \( \frac{−19}{12} \cdot 1 = \frac{−19}{12}\)

    25. \(− \frac{4}{1} \cdot \left( − \frac{1}{4} \right) = 1\)


    Divide the fractions and simplify your result.

    33. \(\frac{8}{23} \div \frac{−6}{11}\)

    34. \(\frac{−10}{21} \div \frac{−6}{5}\)

    45. \(\frac{5}{9} \div \frac{4}{3}\)

    56. \(\frac{−2}{7} \div \frac{−8}{7}\)

    57. \(\frac{20}{17} \div 5\)

    66. \(−6 \div \frac{−21}{8}\)

    67. \(\frac{3}{4} \div (−9)\)

     

     

     

     

     

    Answers

    1. \(\frac{5}{16}\)

    3. \(− \frac{1}{17}\)

    5. \(− \frac{16}{15}\)

    7. \(\frac{1}{30}\)

    19. multiplicative identity property

    25. multiplicative inverse property

    33. \(− \frac{44}{69}\)

    34. \(\frac{25}{63}\)

    45. \( \frac{5}{12}\)

    56. \(\frac{1}{4}\)

    57. \(\frac{4}{17}\)

    66. \(\frac{16}{7}\)

    67. \(− \frac{1}{12}\)

     


    This page titled 2.3: Dividing Fractions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by David Arnold.

    • Was this article helpful?