Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3.4.1: Examples

  • Page ID
    2174
  •  

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Example 3.4.1.1: Navier-Stokes equations

    The Navier-Stokes system for a viscous incompressible liquid is
    \begin{eqnarray*}
    v_t+(v\cdot\nabla_x)v&=&-\frac{1}{\rho}\nabla_x p+\gamma\triangle_x v\\
    \text{div}_x\ v&=&0,
    \end{eqnarray*}
    where
    \(\rho\) is the (constant and positive) density of liquid,
    \(\gamma\) is the (constant and positive) viscosity of liquid,
    \(v=v(x,t)\) velocity vector of liquid particles, \(x\in\mathbb{R}^3\) or in \(\mathbb{R}^2\),
    \(p=p(x,t)\) pressure.

    The problem is to find solutions \(v,\ p\) of the above system.

    Example 3.4.2.1: Linear elasticity

    Consider the system
    \begin{equation}
    \label{elast}
    \rho\frac{\partial^2u}{\partial t^2}=\mu\triangle_x u+(\lambda+\mu)\nabla_x(\text{div}_x\ u)+f.
    \end{equation}
    Here is, in the case of an elastic body in \(\mathbb{R}^3\),
    \(u(x,t)=(u_1(x,t),u_2(x,t),u_3(x,t))\) displacement vector,
    \(f(x,t)\) density of external force,
    \(\rho\) (constant) density,
    \(\lambda,\ \mu\) (positive) Lamé constants.

    The characteristic equation is \(\det C=0\) where the entries of the matrix \(C\) are given by
    $$
    c_{ij}=(\lambda+\mu)\chi_{x_i}\chi_{x_j}+\delta_{ij}\left(\mu|\nabla_x\chi|^2-\rho\chi_t^2\right).
    $$
    The characteristic equation is
    $$
    \left((\lambda+2\mu)|\nabla_x\chi|^2-\rho\chi_t^2\right)\left(\mu|\nabla_x\chi|^2-\rho\chi_t^2\right)^2=0.
    $$
    It follows that two different speeds \(P\) of characteristic surfaces \(\mathcal{S}(t)\), defined by
    \(\chi(x,t)=const.\), are possible, namely
    $$
    P_1=\sqrt{\frac{\lambda+2\mu}{\rho}},\ \ \mbox{and}\ \  P_2=\sqrt{\frac{\mu}{\rho}}.
    $$
    We recall that \(P=-\chi_t/|\nabla_x\chi|\).

    Contributors