Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.4: Nonlinear Equations in Rn

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

Here we consider the nonlinear differential equation
\begin{equation} \label{nonlinear2} F(x,z,p)=0, \end{equation}
where
x=(x_1,\ldots,x_n),\ z=u(x):\ \Omega\subset\mathbb{R}^n\mapsto\mathbb{R}^1,\ p=\nabla u.
The following system of 2n+1 ordinary differential equations is called characteristic system.
\begin{eqnarray*} x'(t)&=&\nabla_pF\\ z'(t)&=&p\cdot\nabla_pF\\ p'(t)&=&-\nabla_xF-F_zp. \end{eqnarray*}
Let
x_0(s)=(x_{01}(s),\ldots,x_{0n}(s)),\ s=(s_1,\ldots,s_{n-1}),
be a given regular (n-1)-dimensional C^2-hypersurface in \mathbb{R}^n, i. e., we assume
\mbox{rank}\frac{\partial x_0(s)}{\partial s}=n-1.
Here s\in D is a parameter from an (n-1)-dimensional parameter domain D.

For example, x=x_0(s) defines in the three dimensional case a regular surface in \mathbb{R}^3.

Assume
z_0(s):\ D\mapsto\mathbb{R}^1,\ p_0(s)=(p_{01}(s),\ldots,p_{0n}(s))
are given sufficiently regular functions.

The (2n+1)-vector
(x_0(s),z_0(s),p_0(s))
is called initial strip manifold and the condition
\frac{\partial z_0}{\partial s_l}=\sum_{i=1}^{n-1}p_{0i}(s)\frac{\partial x_{0i}}{\partial s_l},
l=1,\ldots,n-1, strip condition.

The initial strip manifold is said to be non-characteristic if
\det\left(\begin{array}{llcl}F_{p_1}&F_{p_2}&\cdots & F_{p_n}\\ \frac{\partial x_{01}}{\partial s_1}&\frac{\partial x_{02}}{\partial s_1}&\cdots & \frac{\partial x_{0n}}{\partial s_1}\\ ... & ... & ... & ...\\ \frac{\partial x_{01}}{\partial s_{n-1}}&\frac{\partial x_{02}}{\partial s_{n-1}}&\cdots & \frac{\partial x_{0n}}{\partial s_{n-1}}\end{array}\right)\not=0,
where the argument of F_{p_j} is the initial strip manifold.

Initial value problem of Cauchy. Seek a solution z=u(x) of the differential equation (\ref{nonlinear2}) such that the initial manifold is a subset of \{(x,u(x),\nabla u(x)):\ x\in \Omega\}.

As in the two dimensional case we have under additional regularity assumptions

Theorem 2.3. Suppose the initial strip manifold is not characteristic and satisfies differential equation (\ref{nonlinear2}), that is,
F(x_0(s),z_0(s),p_0(s))=0. Then there is a neighborhood of the initial manifold (x_0(s),z_0(s)) such that there exists a unique solution of the Cauchy initial value problem.

Sketch of proof. Let
x=x(s,t),\ z=z(s,t),\ p=p(s,t)
be the solution of the characteristic system and let
s=s(x),\ t=t(x)
be the inverse of x=x(s,t) which exists in a neighborhood of t=0. Then, it turns out that
z=u(x):= z(s_1(x_1,\ldots,x_n),\ldots,s_{n-1}(x_1,\ldots,x_n),t(x_1,\ldots,x_n))
is the solution of the problem.

Contributors and Attributions


This page titled 2.4: Nonlinear Equations in \mathbb{R}^n is shared under a not declared license and was authored, remixed, and/or curated by Erich Miersemann.

Support Center

How can we help?