8.4: Trigonometric Substitutions
- Page ID
- 914
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)So far we have seen that it sometimes helps to replace a subexpression of a function by a single variable. Occasionally it can help to replace the original variable by something more complicated. This seems like a "reverse'' substitution, but it is really no different in principle than ordinary substitution.
Example \(\PageIndex{1}\)
Evaluate
\[\int \sqrt{1-x^2}\,dx.\]
Solution
Let \(x=\sin u\) so \(dx=\cos u\,du\). Then
\[ \int \sqrt{1-x^2}\,dx=\int\sqrt{1-\sin^2 u}\cos u\,du= \int\sqrt{\cos^2 u}\cos u\,du. \]
We would like to replace \( \sqrt{\cos^2 u}\) by \(\cos u\), but this is valid only if \(\cos u \) is positive, since \( \sqrt{\cos^2 u}\) is positive. Consider again the substitution \(x=\sin u\). We could just as well think of this as \(u=\arcsin x\). If we do, then by the definition of the arcsine, \(-\pi/2\le u\le\pi/2\), so \(\cos u\ge0\). Then we continue:
\[\eqalign{ \int\sqrt{\cos^2 u}\cos u\,du&=\int\cos^2u\,du=\int {1+\cos 2u\over2}\,du = {u\over 2}+{\sin 2u\over4}+C\cr &={\arcsin x\over2}+{\sin(2\arcsin x)\over4}+C.\cr }\]
This is a perfectly good answer, though the term \(\sin(2\arcsin x)\) is a bit unpleasant. It is possible to simplify this. Using the identity \(\sin 2x=2\sin x\cos x\), we can write
\[\sin 2u=2\sin u\cos u=2\sin(\arcsin x)\sqrt{1-\sin^2 u}= 2x\sqrt{1-\sin^2(\arcsin x)}=2x\sqrt{1-x^2}.\]
Then the full antiderivative is
\[ {\arcsin x\over2}+{2x\sqrt{1-x^2}\over4}= {\arcsin x\over2}+{x\sqrt{1-x^2}\over2}+C. \]
This type of substitution is usually indicated when the function you wish to integrate contains a polynomial expression that might allow you to use the fundamental identity \(\sin^2x+\cos^2x=1\) in one of three forms:
\[ \cos^2 x=1-\sin^2x,\]
\[ \sec^2x=1+\tan^2x,\]
or
\[ \tan^2x=\sec^2x-1.\]
If your function contains \(1-x^2\), as in the example above, try \(x=\sin u\); if it contains \(1+x^2\) try \(x=\tan u\); and if it contains \( x^2-1\), try \(x=\sec u\). Sometimes you will need to try something a bit different to handle constants other than one.
Example \(\PageIndex{2}\)
Evaluate \[\int\sqrt{4-9x^2}\,dx.\]
Solution
We start by rewriting this so that it looks more like the previous example:
\[ \int\sqrt{4-9x^2}\,dx=\int\sqrt{4(1-(3x/2)^2)}\,dx =\int 2\sqrt{1-(3x/2)^2}\,dx. \]
Now let \(3x/2=\sin u\) so \((3/2)\,dx=\cos u \,du\) or \(dx=(2/3)\cos u\,du\). Then
\[\eqalign{ \int 2\sqrt{1-(3x/2)^2}\,dx&=\int 2\sqrt{1-\sin^2u}\,(2/3)\cos u\,du ={4\over3}\int \cos^2u\,du\cr &={4u\over 6}+{4\sin 2u\over12}+C\cr &={2\arcsin(3x/2)\over3}+{2\sin u \cos u\over3}+C\cr &={2\arcsin(3x/2)\over3}+{2\sin(\arcsin(3x/2))\cos(\arcsin(3x/2))\over3}+C\cr &={2\arcsin(3x/2)\over3}+{2(3x/2)\sqrt{1-(3x/2)^2}\over3}+C\cr &={2\arcsin(3x/2)\over3}+{x\sqrt{4-9x^2}\over2}+C,\cr }\]
using some of the work fromExample\(\PageIndex{1}\),
Example \(\PageIndex{3}\)
Evaluate \[\int\sqrt{1+x^2}\,dx.\]
Solution
Let \(x=\tan u\), \(dx=\sec^2 u\,du\), so
$$ \int\sqrt{1+x^2}\,dx=\int \sqrt{1+\tan^2 u}\sec^2u\,du= \int\sqrt{\sec^2u}\sec^2u\,du. \]
Since \(u=\arctan(x)\), \(-\pi/2\le u\le\pi/2\) and \(\sec u\ge0\), so \(\sqrt{\sec^2u}=\sec u\). Then $$\int\sqrt{\sec^2u}\sec^2u\,du=\int \sec^3 u \,du.$$ In problems of this type, two integrals come up frequently: \( \int\sec^3u\,du\) and \(\int\sec u\,du\). Both have relatively nice expressions but they are a bit tricky to discover.
First we do \(\int\sec u\,du\), which we will need to compute \(\int\sec^3u\,du$\):
$$\eqalign{ \int\sec u\,du&=\int\sec u\,{\sec u +\tan u\over \sec u +\tan u}\,du\cr &=\int{\sec^2 u +\sec u\tan u\over \sec u +\tan u}\,du.\cr }\]
Now let \(w=\sec u +\tan u\), \(dw=\sec u \tan u + \sec^2u\,du\), exactly the numerator of the function we are integrating. Thus
$$\eqalign{ \int\sec u\,du=\int{\sec^2 u +\sec u\tan u\over \sec u +\tan u}\,du&= \int{1\over w}\,dw=\ln |w|+C\cr &=\ln|\sec u +\tan u|+C.\cr }\]
Now for \(\int\sec^3 u\,du\):
$$\eqalign{ \sec^3u&={\sec^3u\over2}+{\sec^3u\over2}={\sec^3u\over2}+{(\tan^2u+1)\sec u\over 2}\cr &={\sec^3u\over2}+{\sec u \tan^2 u\over2}+{\sec u\over 2}= {\sec^3u+\sec u \tan^2u\over 2}+{\sec u\over 2}.\cr }\]
We already know how to integrate \(\sec u\), so we just need the first quotient. This is "simply'' a matter of recognizing the product rule in action: $$\int \sec^3u+\sec u \tan^2u\,du=\sec u \tan u.\]
So putting these together we get
$$ \int\sec^3u\,du={\sec u \tan u\over2}+{\ln|\sec u +\tan u| \over2}+C, \]
and reverting to the original variable \(x\):
$$\eqalign{ \int\sqrt{1+x^2}\,dx&={\sec u \tan u\over2}+{\ln|\sec u +\tan u|\over2}+C\cr &={\sec(\arctan x) \tan(\arctan x)\over2} +{\ln|\sec(\arctan x) +\tan(\arctan x)|\over2}+C\cr &={ x\sqrt{1+x^2}\over2} +{\ln|\sqrt{1+x^2} +x|\over2}+C,\cr }\]
using \(\tan(\arctan x)=x\) and \(\sec(\arctan x)=\sqrt{1+\tan^2(\arctan x)}=\sqrt{1+x^2}\).