7.2E: Addition and Subtraction Identities (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Section 7.2 Exercises
Find an exact value for each of the following.
1. sin(75∘)
2. sin(195∘)
3. cos(165∘)
4. cos(345∘)
5. cos(7π12)
6. cos(π12)
7. sin(5π12)
8. sin(11π12)
Rewrite in terms of sin(x) and cos(x).
9. sin(x+11π6)
10. sin(x−3π4)
11. cos(x−5π6)
12. cos(x+2π3)
Simplify each expression.
13. csc(π2−t)
14. sec(π2−w)
15. cot(π2−x)
16. tan(π2−x)
Rewrite the product as a sum.
17. 16sin(16x)sin(11x)
18. 20cos(36t)cos(6t)
19. 2sin(5x)cos(3x)
20. 10cos(5x)sin(10x)
Rewrite the sum as a product.
21. cos(6t)+cos(4t)
22. cos(6u)+cos(4u)
23. sin(3x)+sin(7x)
24. sin(h)+sin(3h)
25. Given sin(a)=23 and cos(b)=−14, with a and b both in the interval [π2,π):
a. Find sin(a+b)
b. Find cos(a−b)
26. Given sin(a)=45 and cos(b)=13, with a and b both in the interval [0,π2):
a. Find sin(a−b)
b. Find cos(a+b)
Solve each equation for all solutions.
27. sin(3x)cos(6x)−cos(3x)sin(6x)=−0.9
28. sin(6x)cos(11x)−cos(6x)sin(11x)=−0.1
29. cos(2x)cos(x)+sin(2x)sin(x)=1
30. cos(5x)cos(3x)−sin(5x)sin(3x)=√32
Solve each equation for all solutions.
31. cos(5x)=−cos(2x)
32. sin(5x)=sin(3x)
33. cos(6θ)−cos(2θ)=sin(4θ)
34. cos(8θ)−cos(2θ)=sin(5θ)
Rewrite as a single function of the form Asin(Bx+C).
35. 4sin(x)−6cos(x)
36. −sin(x)−5cos(x)
37. 5sin(3x)+2cos(3x)
38. −3sin(5x)+4cos(5x)
Solve for the first two positive solutions.
39. −5sin(x)+3cos(x)=1
40. 3sin(x)+cos(x)=2
41. 3sin(2x)−5cos(2x)=3
42. −3sin(4x)−2cos(4x)=1
Simplify.
43. sin(7t)+sin(5t)cos(7t)+cos(5t)
44. sin(9t)−sin(3t)cos(9t)+cos(3t)
Prove the identity.
44. tan(x+π4)=tan(x)+11−tan(x)
45. tan(π4−t)=1−tan(t)1+tan(t)
46. cos(a+b)+cos(a−b)=2cos(a)cos(b)
47. cos(a+b)cos(a−b)=1−tan(a)tan(b)1+tan(a)tan(b)
48. tan(a+b)tan(a−b)=sin(a)cos(a)+sin(b)cos(b)sin(a)cos(a)−sin(b)cos(b)
49. 2sin(a+b)sin(a−b)=cos(2b)−cos(2a)
50. sin(x)+sin(y)cos(x)+cos(y)=tan(12(x+y))
Prove the identity.
51. cos(a+b)cos(a)cos(b)=1−tan(a)tan(b)
52. cos(x+y)cos(x−y)=cos2x−sin2y
53. Use the sum and difference identities to establish the product-to-sum identity
sin(α)sin(β)=12(cos(α−β)−cos(α+β))
54. Use the sum and difference identities to establish the product-to-sum identity
cos(α)cos(β)=12(cos(α+β)+cos(α−β))
55. Use the product-to-sum identities to establish the sum-to-product identity
cos(u)+cos(v)=2cos(u+v2)cos(u−v2)
56. Use the product-to-sum identities to establish the sum-to-product identity
cos(u)−cos(v)=−2sin(u+v2)sin(u−v2)
- Answer
-
1. √2+√64
3. −√2−√64
5. √2−√64
7. √2+√64
9. √32sin(x)−12cos(x)
11. −√32cos(x)+12sin(x)
13. sec(t)
15. tan(x)
17. 8(cos(5x)−cos(27x))
19. sin(8x)+sin(2x)
21. 2cos(5t)cos(t)
23. 2sin(5x)cos(2x)
25. a. (23)(−14)+(−√53)(√154)=−2−5√312
b. (−√53)(−14)+(23)(√154)=√5+2√151227. 0.373+2π3k and 0.674+2π3k, where k is an integer
29. 2πk, where k is an integer
31. π7+4π7k, 3π7+4π7k, π3+4π3k, and π+4π3k, where k is an integer
33. 7π12+πk, 11π12+πk, and π4k, where k is an integer
35. 2√13sin(x+5.3004) or 2√13sin(x−0.9828)
37. √29sin(3x+0.3805)
39. 0.3681, 3.8544
41. 0.7854, 1.8158
43. tan(6t)