Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.2E: Addition and Subtraction Identities (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Section 7.2 Exercises

Find an exact value for each of the following.

1. sin(75)

2. sin(195)

3. cos(165)

4. cos(345)

5. cos(7π12)

6. cos(π12)

7. sin(5π12)

8. sin(11π12)

Rewrite in terms of sin(x) and cos(x).

9. sin(x+11π6)

10. sin(x3π4)

11. cos(x5π6)

12. cos(x+2π3)

Simplify each expression.

13. csc(π2t)

14. sec(π2w)

15. cot(π2x)

16. tan(π2x)

Rewrite the product as a sum.

17. 16sin(16x)sin(11x)

18. 20cos(36t)cos(6t)

19. 2sin(5x)cos(3x)

20. 10cos(5x)sin(10x)

Rewrite the sum as a product.

21. cos(6t)+cos(4t)

22. cos(6u)+cos(4u)

23. sin(3x)+sin(7x)

24. sin(h)+sin(3h)

25. Given sin(a)=23 and cos(b)=14, with a and b both in the interval [π2,π):

a. Find sin(a+b)
b. Find cos(ab)

26. Given sin(a)=45 and cos(b)=13, with a and b both in the interval [0,π2):

a. Find sin(ab)
b. Find cos(a+b)

Solve each equation for all solutions.

27. sin(3x)cos(6x)cos(3x)sin(6x)=0.9

28. sin(6x)cos(11x)cos(6x)sin(11x)=0.1

29. cos(2x)cos(x)+sin(2x)sin(x)=1

30. cos(5x)cos(3x)sin(5x)sin(3x)=32

Solve each equation for all solutions.

31. cos(5x)=cos(2x)

32. sin(5x)=sin(3x)

33. cos(6θ)cos(2θ)=sin(4θ)

34. cos(8θ)cos(2θ)=sin(5θ)

Rewrite as a single function of the form Asin(Bx+C).

35. 4sin(x)6cos(x)

36. sin(x)5cos(x)

37. 5sin(3x)+2cos(3x)

38. 3sin(5x)+4cos(5x)

Solve for the first two positive solutions.

39. 5sin(x)+3cos(x)=1

40. 3sin(x)+cos(x)=2

41. 3sin(2x)5cos(2x)=3

42. 3sin(4x)2cos(4x)=1

Simplify.

43. sin(7t)+sin(5t)cos(7t)+cos(5t)

44. sin(9t)sin(3t)cos(9t)+cos(3t)

Prove the identity.

44. tan(x+π4)=tan(x)+11tan(x)

45. tan(π4t)=1tan(t)1+tan(t)

46. cos(a+b)+cos(ab)=2cos(a)cos(b)

47. cos(a+b)cos(ab)=1tan(a)tan(b)1+tan(a)tan(b)

48. tan(a+b)tan(ab)=sin(a)cos(a)+sin(b)cos(b)sin(a)cos(a)sin(b)cos(b)

49. 2sin(a+b)sin(ab)=cos(2b)cos(2a)

50. sin(x)+sin(y)cos(x)+cos(y)=tan(12(x+y))

Prove the identity.

51. cos(a+b)cos(a)cos(b)=1tan(a)tan(b)

52. cos(x+y)cos(xy)=cos2xsin2y

53. Use the sum and difference identities to establish the product-to-sum identity

sin(α)sin(β)=12(cos(αβ)cos(α+β))

54. Use the sum and difference identities to establish the product-to-sum identity

cos(α)cos(β)=12(cos(α+β)+cos(αβ))

55. Use the product-to-sum identities to establish the sum-to-product identity

cos(u)+cos(v)=2cos(u+v2)cos(uv2)

56. Use the product-to-sum identities to establish the sum-to-product identity

cos(u)cos(v)=2sin(u+v2)sin(uv2)

Answer

1. 2+64

3. 264

5. 264

7. 2+64

9. 32sin(x)12cos(x)

11. 32cos(x)+12sin(x)

13. sec(t)

15. tan(x)

17. 8(cos(5x)cos(27x))

19. sin(8x)+sin(2x)

21. 2cos(5t)cos(t)

23. 2sin(5x)cos(2x)

25. a. (23)(14)+(53)(154)=25312
b. (53)(14)+(23)(154)=5+21512

27. 0.373+2π3k and 0.674+2π3k, where k is an integer

29. 2πk, where k is an integer

31. π7+4π7k, 3π7+4π7k, π3+4π3k, and π+4π3k, where k is an integer

33. 7π12+πk, 11π12+πk, and π4k, where k is an integer

35. 213sin(x+5.3004) or 213sin(x0.9828)

37. 29sin(3x+0.3805)

39. 0.3681, 3.8544

41. 0.7854, 1.8158

43. tan(6t)


This page titled 7.2E: Addition and Subtraction Identities (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?