Skip to main content
Mathematics LibreTexts

8.4: Simplify Rational Exponents

  • Page ID
    114220
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    By the end of this section, you will be able to:

    • Simplify expressions with a1na1n
    • Simplify expressions with amnamn
    • Use the properties of exponents to simplify expressions with rational exponents
    Be Prepared 8.7

    Before you get started, take this readiness quiz.

    Add: 715+512.715+512.
    If you missed this problem, review Example 1.28.

    Be Prepared 8.8

    Simplify: (4x2y5)3.(4x2y5)3.
    If you missed this problem, review Example 5.18.

    Be Prepared 8.9

    Simplify: 5−3.5−3.
    If you missed this problem, review Example 5.14.

    Simplify Expressions with a1na1n

    Rational exponents are another way of writing expressions with radicals. When we use rational exponents, we can apply the properties of exponents to simplify expressions.

    The Power Property for Exponents says that (am)n=am·n(am)n=am·n when m and n are whole numbers. Let’s assume we are now not limited to whole numbers.

    Suppose we want to find a number p such that (8p)3=8.(8p)3=8. We will use the Power Property of Exponents to find the value of p.

    (8p)3=8Multiply the exponents on the left.83p=8Write the exponent 1 on the right.83p=81Since the bases are the same, the exponents must be equal.3p=1Solve forp.p=13(8p)3=8Multiply the exponents on the left.83p=8Write the exponent 1 on the right.83p=81Since the bases are the same, the exponents must be equal.3p=1Solve forp.p=13

    So (813)3=8.(813)3=8. But we know also (83)3=8.(83)3=8. Then it must be that 813=83.813=83.

    This same logic can be used for any positive integer exponent n to show that a1n=an.a1n=an.

    Rational Exponent a 1 n a 1 n

    If anan is a real number and n2,n2, then

    a1n=ana1n=an

    The denominator of the rational exponent is the index of the radical.

    There will be times when working with expressions will be easier if you use rational exponents and times when it will be easier if you use radicals. In the first few examples, you’ll practice converting expressions between these two notations.

    Example 8.26

    Write as a radical expression: x12x12 y13y13 z14.z14.

    Answer

    We want to write each expression in the form an.an.

      x12x12
    The denominator of the rational exponent is 2, so
    the index of the radical is 2. We do not show the
    index when it is 2.
    xx

      y13y13
    The denominator of the exponent is 3, so the
    index is 3.
    y3y3

      z14z14
    The denominator of the exponent is 4, so the
    index is 4.
    z4z4
    Try It 8.51

    Write as a radical expression: t12t12 m13m13 r14.r14.

    Try It 8.52

    Write as a radial expression: b16b16 z15z15 p14.p14.

    In the next example, we will write each radical using a rational exponent. It is important to use parentheses around the entire expression in the radicand since the entire expression is raised to the rational power.

    Example 8.27

    Write with a rational exponent: 5y5y 4x34x3 35z4.35z4.

    Answer

    We want to write each radical in the form a1n.a1n.

      5y5y
    No index is shown, so it is 2.
    The denominator of the exponent will be 2.
    (5y)12(5y)12
    Put parentheses around the entire
    expression 5y.5y.
     

      4x34x3
    The index is 3, so the denominator of the
    exponent is 3. Include parentheses (4x).(4x).
    (4x)13(4x)13

      35z435z4
    The index is 4, so the denominator of the
    exponent is 4. Put parentheses only around
    the 5z5z since 3 is not under the radical sign.
    3(5z)143(5z)14
    Try It 8.53

    Write with a rational exponent: 10m10m 3n53n5 36y4.36y4.

    Try It 8.54

    Write with a rational exponent: 3k73k7 5j45j4 82a3.82a3.

    In the next example, you may find it easier to simplify the expressions if you rewrite them as radicals first.

    Example 8.28

    Simplify: 25122512 64136413 25614.25614.

    Answer

      25122512
    Rewrite as a square root. 2525
    Simplify. 55

      64136413
    Rewrite as a cube root. 643643
    Recognize 64 is a perfect cube. 433433
    Simplify. 44

      2561425614
    Rewrite as a fourth root. 25642564
    Recognize 256 is a perfect fourth power. 444444
    Simplify. 44
    Try It 8.55

    Simplify: 36123612 813813 1614.1614.

    Try It 8.56

    Simplify: 1001210012 27132713 8114.8114.

    Be careful of the placement of the negative signs in the next example. We will need to use the property an=1anan=1an in one case.

    Example 8.29

    Simplify: (−16)14(−16)14 16141614 (16)14.(16)14.

    Answer

      (−16)14(−16)14
    Rewrite as a fourth root. −164−164
      (−2)44(−2)44
    Simplify. No real solution.No real solution.

      16141614
    The exponent only applies to the 16.
    Rewrite as a fouth root.
    164164
    Rewrite 16 as 24.24. 244244
    Simplify. −2−2

      (16)14(16)14
    Rewrite using the property an=1an.an=1an. 1(16)141(16)14
    Rewrite as a fourth root. 11641164
    Rewrite 16 as 24.24. 12441244
    Simplify. 1212
    Try It 8.57

    Simplify: (−64)12(−64)12 64126412 (64)12.(64)12.

    Try It 8.58

    Simplify: (−256)14(−256)14 2561425614 (256)14.(256)14.

    Simplify Expressions with amnamn

    We can look at amnamn in two ways. Remember the Power Property tells us to multiply the exponents and so (a1n)m(a1n)m and (am)1n(am)1n both equal amn.amn. If we write these expressions in radical form, we get

    amn=(a1n)m=(an)mandamn=(am)1n=amnamn=(a1n)m=(an)mandamn=(am)1n=amn

    This leads us to the following definition.

    Rational Exponent a m n a m n

    For any positive integers m and n,

    amn=(an)mandamn=amnamn=(an)mandamn=amn

    Which form do we use to simplify an expression? We usually take the root first—that way we keep the numbers in the radicand smaller, before raising it to the power indicated.

    Example 8.30

    Write with a rational exponent: y3y3 (2x3)4(2x3)4 (3a4b)3.(3a4b)3.

    Answer

    We want to use amn=amnamn=amn to write each radical in the form amn.amn.

    .



    .



    .
    Try It 8.59

    Write with a rational exponent: x5x5 (3y4)3(3y4)3 (2m3n)5.(2m3n)5.

    Try It 8.60

    Write with a rational exponent: a25a25 (5ab3)5(5ab3)5 (7xyz)3.(7xyz)3.

    Remember that an=1an.an=1an. The negative sign in the exponent does not change the sign of the expression.

    Example 8.31

    Simplify: 1252312523 16321632 3225.3225.

    Answer

    We will rewrite the expression as a radical first using the defintion, amn=(an)m.amn=(an)m. This form lets us take the root first and so we keep the numbers in the radicand smaller than if we used the other form.

      1252312523
    The power of the radical is the numerator of the exponent, 2.
    The index of the radical is the denominator of the
    exponent, 3.
    (1253)2(1253)2
    Simplify. (5)2(5)2
      2525

    We will rewrite each expression first using an=1anan=1an and then change to radical form.

      16321632
    Rewrite using an=1anan=1an 1163211632
    Change to radical form. The power of the radical is the
    numerator of the exponent, 3. The index is the denominator
    of the exponent, 2.
    1(16)31(16)3
    Simplify. 143143
      164164

      32253225
    Rewrite using an=1an.an=1an. 1322513225
    Change to radical form. 1(325)21(325)2
    Rewrite the radicand as a power. 1(255)21(255)2
    Simplify. 122122
      1414
    Try It 8.61

    Simplify: 27232723 81328132 1634.1634.

    Try It 8.62

    Simplify: 432432 27232723 62534.62534.

    Example 8.32

    Simplify: 25322532 25322532 (−25)32.(−25)32.

    Answer

      25322532
    Rewrite in radical form. (25)3(25)3
    Simplify the radical. (5)3(5)3
    Simplify. −125−125

      25322532
    Rewrite using an=1an.an=1an. (12532)(12532)
    Rewrite in radical form. (1(25)3)(1(25)3)
    Simplify the radical. (1(5)3)(1(5)3)
    Simplify. 11251125

      (−25)32(−25)32
    Rewrite in radical form. (−25)3(−25)3
    There is no real number whose square root
    is−25.is−25.
    Not a real number.Not a real number.
    Try It 8.63

    Simplify: −1632−1632 −1632−1632 (−16)32.(−16)32.

    Try It 8.64

    Simplify: −8132−8132 −8132−8132 (−81)32.(−81)32.

    Use the Properties of Exponents to Simplify Expressions with Rational Exponents

    The same properties of exponents that we have already used also apply to rational exponents. We will list the Properties of Exponenets here to have them for reference as we simplify expressions.

    Properties of Exponents

    If a and b are real numbers and m and n are rational numbers, then

    Product Propertyam·an=am+nPower Property(am)n=am·nProduct to a Power(ab)m=ambmQuotient Propertyaman=amn,a0Zero Exponent Definitiona0=1,a0Quotient to a Power Property(ab)m=ambm,b0Negative Exponent Propertyan=1an,a0Product Propertyam·an=am+nPower Property(am)n=am·nProduct to a Power(ab)m=ambmQuotient Propertyaman=amn,a0Zero Exponent Definitiona0=1,a0Quotient to a Power Property(ab)m=ambm,b0Negative Exponent Propertyan=1an,a0

    We will apply these properties in the next example.

    Example 8.33

    Simplify: x12·x56x12·x56 (z9)23(z9)23 x13x53.x13x53.

    Answer

    The Product Property tells us that when we multiply the same base, we add the exponents.

      x12·x56x12·x56
    The bases are the same, so we add the
    exponents.
    x12+56x12+56
    Add the fractions. x86x86
    Simplify the exponent. x43x43

    The Power Property tells us that when we raise a power to a power, we multiply the exponents.

      (z9)23(z9)23
    To raise a power to a power, we multiply
    the exponents.
    z9·23z9·23
    Simplify. z6z6

    The Quotient Property tells us that when we divide with the same base, we subtract the exponents.

      x13x53x13x53
      x13x53x13x53
    To divide with the same base, we subtract
    the exponents.
    1x53131x5313
    Simplify. 1x431x43
    Try It 8.65

    Simplify: x16·x43x16·x43 (x6)43(x6)43 x23x53.x23x53.

    Try It 8.66

    Simplify: y34·y58y34·y58 (m9)29(m9)29 d15d65.d15d65.

    Sometimes we need to use more than one property. In the next example, we will use both the Product to a Power Property and then the Power Property.

    Example 8.34

    Simplify: (27u12)23(27u12)23 (m23n12)32.(m23n12)32.

    Answer

      (27u12)23(27u12)23
    First we use the Product to a Power
    Property.
    (27)23(u12)23(27)23(u12)23
    Rewrite 27 as a power of 3. (33)23(u12)23(33)23(u12)23
    To raise a power to a power, we multiply
    the exponents.
    (32)(u13)(32)(u13)
    Simplify. 9u139u13

      (m23n12)32(m23n12)32
    First we use the Product to a Power
    Property.
    (m23)32(n12)32(m23)32(n12)32
    To raise a power to a power, we multiply
    the exponents.
    mn34mn34
    Try It 8.67

    Simplify: (32x13)35(32x13)35 (x34y12)23.(x34y12)23.

    Try It 8.68

    Simplify: (81n25)32(81n25)32 (a32b12)43.(a32b12)43.

    We will use both the Product Property and the Quotient Property in the next example.

    Example 8.35

    Simplify: x34·x14x64x34·x14x64 (16x43y56x23y16)12.(16x43y56x23y16)12.

    Answer

      x34·x14x64x34·x14x64
    Use the Product Property in the numerator,
    add the exponents.
    x24x64x24x64
    Use the Quotient Property, subtract the
    exponents.
    x84x84
    Simplify. x2x2

    Follow the order of operations to simplify inside the parenthese first.

      (16x43y56x23y16)12(16x43y56x23y16)12
    Use the Quotient Property, subtract the
    exponents.
    (16x63y66)12(16x63y66)12
    Simplify. (16x2y)12(16x2y)12
    Use the Product to a Power Property,
    multiply the exponents.
    4xy124xy12
    Try It 8.69

    Simplify: m23·m13m53m23·m13m53 (25m16n116m23n16)12.(25m16n116m23n16)12.

    Try It 8.70

    Simplify: u45·u25u135u45·u25u135 (27x45y16x15y56)13.(27x45y16x15y56)13.

    Media

    Access these online resources for additional instruction and practice with simplifying rational exponents.

    Section 8.3 Exercises

    Practice Makes Perfect

    Simplify expressions with a1na1n

    In the following exercises, write as a radical expression.

    119.

    x12x12 y13y13 z14z14

    120.

    r12r12 s13s13 t14t14

    121.

    u15u15 v19v19 w120w120

    122.

    g17g17 h15h15 j125j125

    In the following exercises, write with a rational exponent.

    123.

    x7x7 y9y9 f5f5

    124.

    r8r8 s10s10 t4t4

    125.

    7c37c3 12d712d7 26b426b4

    126.

    5x45x4 9y89y8 73z573z5

    127.

    21p21p 8q48q4 436r6436r6

    128.

    25a325a3 3b3b 40c840c8

    In the following exercises, simplify.

    129.

    81128112 1251312513 64126412

    130.

    6251462514 2431524315 32153215

    131.

    16141614 16121612 6251462514

    132.

    64136413 32153215 81148114

    133.

    (−216)13(−216)13 2161321613 (216)13(216)13

    134.

    (−1000)13(−1000)13 100013100013 (1000)13(1000)13

    135.

    (−81)14(−81)14 81148114 (81)14(81)14

    136.

    (−49)12(−49)12 49124912 (49)12(49)12

    137.

    (−36)12(−36)12 36123612 (36)12(36)12

    138.

    (−16)14(−16)14 16141614 16141614

    139.

    (−100)12(−100)12 1001210012 (100)12(100)12

    140.

    (−32)15(−32)15 (243)15(243)15 1251312513

    Simplify Expressions with amnamn

    In the following exercises, write with a rational exponent.

    141.

    m5m5 (3y3)7(3y3)7 (4x5y)35(4x5y)35

    142.

    r74r74 (2pq5)3(2pq5)3 (12m7n)34(12m7n)34

    143.

    u25u25 (6x3)5(6x3)5 (18a5b)74(18a5b)74

    144.

    a3a3 (21v4)3(21v4)3 (2xy5z)24(2xy5z)24

    In the following exercises, simplify.

    145.

    64526452 81−3281−32 (−27)23(−27)23

    146.

    25322532 932932 (−64)23(−64)23

    147.

    32253225 27232723 (−25)12(−25)12

    148.

    1003210032 49524952 (−100)32(−100)32

    149.

    932932 932932 (−9)32(−9)32

    150.

    64326432 64326432 (−64)32(−64)32

    Use the Laws of Exponents to Simplify Expressions with Rational Exponents

    In the following exercises, simplify. Assume all variables are positive.

    151.

    c14·c58c14·c58 (p12)34(p12)34 r45r95r45r95

    152.

    652·612652·612 (b15)35(b15)35 w27w97w27w97

    153.

    y12·y34y12·y34 (x12)23(x12)23 m58m138m58m138

    154.

    q23·q56q23·q56 (h6)43(h6)43 n35n85n35n85

    155.

    (27q32)43(27q32)43 (a13b23)32(a13b23)32

    156.

    (64s37)16(64s37)16 (m43n12)34(m43n12)34

    157.

    (16u13)34(16u13)34 (4p13q12)32(4p13q12)32

    158.

    (625n83)34(625n83)34 (9x25y35)52(9x25y35)52

    159.

    r52·r12r32r52·r12r32 (36s15t32s95t12)12(36s15t32s95t12)12

    160.

    a34·a14a104a34·a14a104 (27b23c52b73c12)13(27b23c52b73c12)13

    161.

    c53·c13c23c53·c13c23 (8x53y1227x43y52)13(8x53y1227x43y52)13

    162.

    m74·m54m24m74·m54m24 (16m15n3281m95n12)14(16m15n3281m95n12)14

    Writing Exercises

    163.

    Show two different algebraic methods to simplify 432.432. Explain all your steps.

    164.

    Explain why the expression (16)32(16)32 cannot be evaluated.

    Self Check

    After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

    This table has 4 rows and 4 columns. The first row is a header row and it labels each column. The first column header is “I can…”, the second is “Confidently”, the third is “With some help”, and the fourth is “No, I don’t get it”. Under the first column are the phrases “simplify expressions with a to the power of 1 divided by n.”, “simplify expression with a to the power of m divided by n”, and “use the laws of exponents to simplify expression with rational exponents”. The other columns are left blank so that the learner may indicate their mastery level for each topic.

    What does this checklist tell you about your mastery of this section? What steps will you take to improve?


    This page titled 8.4: Simplify Rational Exponents is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.