$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$
The multiple integral is a generalization of the definite integral with one variable $\int f(x) dx$ to functions of more than one real variable, for example, $\iint f(x, y) \,dx\,dy$ for an indefinite double integral or $\iiint f(x, y, z)\, dx\,dy\,dz$ for an indefinite  triplet integral. For definite multiple integrals, each variable can have different limits of integration.
Thumbnail: Double integral as volume under a surface $$z = 10 − x^2 − y^2/8$$. The rectangular region at the bottom of the body is the domain of integration, while the surface is the graph of the two-variable function to be integrated. Image used with permission (Public Domain; Oleg Alexandrov)