Skip to main content
Mathematics LibreTexts

22.4: Exercises

  • Page ID
    81220
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1

    Calculate each of the following.

    1. \(\displaystyle [\mathrm{GF}(3^6) : \mathrm{GF}(3^3)]\)
    2. \(\displaystyle [\mathrm{GF}(128): \mathrm{GF}(16)]\)
    3. \(\displaystyle [\mathrm{GF}(625) : \mathrm{GF}(25) ]\)
    4. \(\displaystyle [\mathrm{GF}(p^{12}): \mathrm{GF}(p^2)]\)

    2

    Calculate \([\mathrm{GF}(p^m): \mathrm{GF}(p^n)]\text{,}\) where \(n \mid m\text{.}\)

    3

    What is the lattice of subfields for \(\mathrm{GF}(p^{30})\text{?}\)

    4

    Let \(\alpha\) be a zero of \(x^3 + x^2 + 1\) over \({\mathbb Z}_2\text{.}\) Construct a finite field of order \(8\text{.}\) Show that \(x^3 + x^2 + 1\) splits in \({\mathbb Z}_2(\alpha)\text{.}\)

    5

    Construct a finite field of order \(27\text{.}\)

    6

    Prove or disprove: \({\mathbb Q}^\ast\) is cyclic.

    7

    Factor each of the following polynomials in \({\mathbb Z}_2[x]\text{.}\)

    1. \(\displaystyle x^5- 1\)
    2. \(\displaystyle x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\)
    3. \(\displaystyle x^9 - 1\)
    4. \(\displaystyle x^4 +x^3 + x^2 + x + 1\)

    8

    Prove or disprove: \({\mathbb Z}_2[x] / \langle x^3 + x + 1 \rangle \cong {\mathbb Z}_2[x] / \langle x^3 + x^2 + 1 \rangle\text{.}\)

    9

    Determine the number of cyclic codes of length \(n\) for \(n = 6, 7, 8, 10\text{.}\)

    10

    Prove that the ideal \(\langle t + 1 \rangle\) in \(R_n\) is the code in \({\mathbb Z}_2^n\) consisting of all words of even parity.

    11

    Construct all BCH codes of

    1. length \(7\text{.}\)
    2. length \(15\text{.}\)

    12

    Prove or disprove: There exists a finite field that is algebraically closed.

    13

    Let \(p\) be prime. Prove that the field of rational functions \({\mathbb Z}_p(x)\) is an infinite field of characteristic \(p\text{.}\)

    14

    Let \(D\) be an integral domain of characteristic \(p\text{.}\) Prove that \((a - b)^{p^n} = a^{p^n} - b^{p^n}\) for all \(a, b \in D\text{.}\)

    15

    Show that every element in a finite field can be written as the sum of two squares.

    16

    Let \(E\) and \(F\) be subfields of a finite field \(K\text{.}\) If \(E\) is isomorphic to \(F\text{,}\) show that \(E = F\text{.}\)

    17

    Let \(F \subset E \subset K\) be fields. If \(K\) is a separable extension of \(F\text{,}\) show that \(K\) is also separable extension of \(E\text{.}\)

    18

    Let \(E\) be an extension of a finite field \(F\text{,}\) where \(F\) has \(q\) elements. Let \(\alpha \in E\) be algebraic over \(F\) of degree \(n\text{.}\) Prove that \(F( \alpha )\) has \(q^n\) elements.

    19

    Show that every finite extension of a finite field \(F\) is simple; that is, if \(E\) is a finite extension of a finite field \(F\text{,}\) prove that there exists an \(\alpha \in E\) such that \(E = F( \alpha )\text{.}\)

    20

    Show that for every \(n\) there exists an irreducible polynomial of degree \(n\) in \({\mathbb Z}_p[x]\text{.}\)

    21

    Prove that the Frobenius map \(\Phi : \mathrm{GF}(p^n) \rightarrow \mathrm{GF}(p^n)\) given by \(\Phi : \alpha \mapsto \alpha^p\) is an automorphism of order \(n\text{.}\)

    22

    Show that every element in \(\mathrm{GF}(p^n)\) can be written in the form \(a^p\) for some unique \(a \in \mathrm{GF}(p^n)\text{.}\)

    23

    Let \(E\) and \(F\) be subfields of \(\mathrm{GF}(p^n)\text{.}\) If \(|E| = p^r\) and \(|F| = p^s\text{,}\) what is the order of \(E \cap F\text{?}\)

    24. Wilson's Theorem

    Let \(p\) be prime. Prove that \((p-1)! \equiv -1 \pmod{p}\text{.}\)

    25

    If \(g(t)\) is the minimal generator polynomial for a cyclic code \(C\) in \(R_n\text{,}\) prove that the constant term of \(g(x)\) is \(1\text{.}\)

    26

    Often it is conceivable that a burst of errors might occur during transmission, as in the case of a power surge. Such a momentary burst of interference might alter several consecutive bits in a codeword. Cyclic codes permit the detection of such error bursts. Let \(C\) be an \((n,k)\)-cyclic code. Prove that any error burst up to \(n-k\) digits can be detected.

    27

    Prove that the rings \(R_n\) and \({\mathbb Z}_2^n\) are isomorphic as vector spaces.

    28

    Let \(C\) be a code in \(R_n\) that is generated by \(g(t)\text{.}\) If \(\langle f(t) \rangle\) is another code in \(R_n\text{,}\) show that \(\langle g(t) \rangle \subset \langle f(t) \rangle\) if and only if \(f(x)\) divides \(g(x)\) in \({\mathbb Z}_2[x]\text{.}\)

    29

    Let \(C = \langle g(t) \rangle\) be a cyclic code in \(R_n\) and suppose that \(x^n - 1 = g(x) h(x)\text{,}\) where \(g(x) = g_0 + g_1 x + \cdots + g_{n - k} x^{n - k}\) and \(h(x) = h_0 + h_1 x + \cdots + h_k x^k\text{.}\) Define \(G\) to be the \(n \times k\) matrix

    \[ G = \begin{pmatrix} g_0 & 0 & \cdots & 0 \\ g_1 & g_0 & \cdots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ g_{n-k} & g_{n-k-1} & \cdots & g_0 \\ 0 & g_{n-k} & \cdots & g_{1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & g_{n-k} \end{pmatrix} \nonumber \]

    and \(H\) to be the \((n-k) \times n\) matrix

    \[ H = \begin{pmatrix} 0 & \cdots & 0 & 0 & h_k & \cdots & h_0 \\ 0 & \cdots & 0 & h_k & \cdots & h_0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ h_k & \cdots & h_0 & 0 & 0 & \cdots & 0 \end{pmatrix}\text{.} \nonumber \]

    1. Prove that \(G\) is a generator matrix for \(C\text{.}\)
    2. Prove that \(H\) is a parity-check matrix for \(C\text{.}\)
    3. Show that \(HG = 0\text{.}\)

    This page titled 22.4: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Thomas W. Judson (Abstract Algebra: Theory and Applications) via source content that was edited to the style and standards of the LibreTexts platform.