Skip to main content
Mathematics LibreTexts

2.6: Additional exercises

  • Page ID
    85714
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise 1

    1. The group of units in \(\mathbb{Z}_n\).

    Let \(U_n\) denote the set of elements in \(Z_n\) that have multiplicative inverses, that is,

    \[
    U_n = \{x\in \mathbb{Z}_n\colon \exists y, xy=1\pmod{n}\}.
    \nonumber \]

    1. Show that \(x\) is in \(U_n\) if and only if \(x\) is relatively prime to \(n\text{.}\)
    2. Show that \(U_n\) with the binary operation of multiplication mod \(n\) is an Abelian group.
    3. Show that \(U_n\) is isomorphic to \(Aut(\mathbb{Z}_n)\) via \(x\to [a\to ax]\text{.}\)

    Terminology: The group \(U_n\) is called the the group of (multiplicative) units in \(\mathbb{Z}_n\text{.}\) The function \(n\to |U_n|\text{,}\) important in number theory, is called the Euler phi function, written \(\phi(n)=|U_n|\text{.}\)

    Exercise 2

    2. Fermat's Little Theorem.

    For every integer \(x\) and every prime \(p\text{,}\) we have \(x^p = x \pmod{p}\text{.}\)

    Hint

    First, reduce \(x\) mod \(p\text{,}\) that is, write \(x=qp+r\) with \(0\leq r\leq p-1\text{.}\) Now consider two cases. The case \(r=0\) is trivial. If \(r\neq 0\text{,}\) apply the fact \(r^{|G|}=e\) (see Exercise 2.3.2.8) to the group \(G=U_p\text{.}\)

    Exercise 3

    3. The alternating group.

    1. Show that, for \(n\geq 2\text{,}\) half of the elements of \(S_n\) are even, and half are odd.
    2. The set of even permutations in \(S_n\) is called the alternating group, denoted \(A_n\). Show that \(A_n\) is indeed a subgroup of \(S_n\text{.}\)

    Exercise 4

    4. The order of a permutation.

    Let \(\sigma\in S_n\) be written as a product of disjoint cycles. Show that the order \(\sigma\) is the least common multiple of the lengths of those disjoint cycles.

    Exercise 5

    5. Semidirect product.

    Let \(K,H\) be groups, and let \(\phi\colon H\to Aut(K)\) be a homomorphism. The semidirect product, denoted \(K\times_{\phi} H\text{,}\) or \(K\rtimes H\) if \(\phi\) is understood, is the set consisting of all pairs \((k,h)\) with \(k\in K\text{,}\) \(h\in H\) 1  with the group multiplication operation \(\ast\) given by

    \[
    (k_1,h_1)\ast (k_1,h_2) = (k_1\phi(h_1)(k_2),h_1h_2).
    \nonumber \]

    Two examples demonstrate why this is a useful construction. The dihedral group \(D_n\) is (isomorphic to) the semidirect product \(C_n\rtimes C_2\text{,}\) where \(C_n\) is the cyclic group generated by the rotation \(R_{1/n}\) (rotation by \(1/n\) of a revolution) and \(C_2\) is the two-element group generated by any reflection \(R_L\) in \(D_n\text{.}\) The map \(\phi\colon C_2 \to Aut(C_n)\) is given by \(F_L \to
    [R_{\theta} \to R_{-\theta}]\text{.}\) The Euclidean group of congruence transformations of the plane is (isomorphic to) the group \(\mathbb{R}^2\rtimes O(2)\text{,}\) where \((\mathbb{R}^2,+)\) is the additive group of \(2×1\) column vectors with real entries, and \(O(2)\) is the group of \(2×2\) real orthogonal matrices. The map \(\phi\colon O(2)\to Aut(\mathbb{R}^2)\) is given by \(g\to [v\to gv]\text{,}\) that is to say, the natural action of \(O(2)\) on \(\mathbb{R}^2\text{.}\) [The Euclidean group element \((v,g)\) acts on the point \(x\in\mathbb{R}^2\) by \(x\to
    gx+v\text{.}\)]

    1. Do all the necessary details to show that \(K\rtimes H\) is indeed a group.
    2. (Characterization of semidirect products) Suppose that \(K,H\) are subgroups of a group \(G\text{.}\) Let \(KH=\{kh\colon k\in K,h\in
      H\}\text{.}\) Suppose that \(K\) is a normal subgroup of \(G\text{,}\) that \(G=KH\text{,}\) and that \(K\cap H=\{e\}\text{.}\) Show that \(\phi\colon H\to Aut(K)\text{,}\) given by \(\phi(h)(k)=hkh^{-1}\text{,}\) is a homomorphism. Show that \(\psi\colon K\times_\phi H\to G\text{,}\) given by \(\psi(k,h)=kh\text{,}\) is an isomorphism.
    3. Show that \(D_n\approx C_n\rtimes C_2\text{,}\) as described above.
    4. Show that the following requirement holds for the Euclidean group action. We have

      \[
      [(v_1,g_1)(v_2,g_2)]x = (v_1,g_1)[(v_2,g_2)x],
      \nonumber \]

      for all \(v_1,v_2,x\in \mathbb{R}^2\) and \(g_1,g_2\in O(2)\text{.}\)
    5. Suppose that \(\phi\colon H\to Aut(K)\) is the trivial homomorphism (that is, \(\phi(h)\) is the identity homomorphism on \(K\text{,}\) for all \(h\in H\)). Show that \(K\times_{\phi} H\approx K\times H\) in this case.

    Exercise 6

    6. Group action on functions on a \(G\)-space.

    Suppose that a group \(G\) acts on a set \(X\text{.}\) Let \({\mathcal F}(X,Y)\) denote the set of functions

    \[
    {\mathcal F}(X,Y) = \{f\colon X\to Y\}
    \nonumber \]

    from \(X\) to some set \(Y\text{.}\) Show that the formula

    \[
    (g\cdot \alpha)(x) = \alpha(g^{-1}\cdot x)
    \nonumber \]

    defines an action of \(G\) on \({\mathcal F}(X,Y)\text{,}\) where \(g\in G\text{,}\) \(\alpha \in {\mathcal F}(X,Y)\text{,}\) and \(x\in X\text{.}\)


    This page titled 2.6: Additional exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David W. Lyons via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?