Skip to main content
Mathematics LibreTexts

2.3: Solution of Polynomial Inequalities by Graphing

  • Page ID
    40901
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In this section, we will combine the concepts of the previous two sections to solve polynomial inequalities. In Section \(2.2,\) we solved equations by graphing and finding the \(x\) -values which made \(y=0 .\) In solving an inequality, we will be concerned with finding the range of \(x\) values that make \(y\) either greater than or less than \(0,\) depending on the given problem.
    Example
    Solve the given inequality.
    \(2 x^{3}+8 x^{2}+5 x-3 \geq 0\)
    First, we graph the function:
    clipboard_e3f8e47f913fd0e34106737c8e2343cf8.png
    Then we identify the intervals of \(x\) -values that make the \(y\) value greater than or equal to zero, as indicated in the problem.
    clipboard_e6b2909ccb26526cd094be44a912eed0f.png
    The indicated roots of the function \((A, B \text { and } C)\) are the \(x\) -values that make \(y\) equal to zero. These points divide the graph between the regions where \(y\) is greater than zero and the regions where \(y\) is less than zero. The solution to the given inequlaity \(2 x^{3}+8 x^{2}+5 x-3 \geq 0\) are \(\mathrm{A} \leq x \leq \mathrm{B}\) OR \(x \geq \mathrm{C}\)
    When we find the values of \(\mathrm{A}, \mathrm{B}\) and \(\mathrm{C}: \mathrm{A}=-3, \mathrm{B} \approx-1.366\) and \(\mathrm{C} \approx 0.366,\) we can
    complete the solution to the problem.
    \(2 x^{3}+8 x^{2}+5 x-3 \geq 0\)
    \(-3 \leq x \leq-1.366\) OR \(x \geq 0.366\)

    Example
    Solve the given inequality.
    \(x^{4}-2 x^{3}-5 x^{2}+8 x+3 \leq 0\)
    First, we graph the function:
    clipboard_e0d1f896a2f4849e3bffdbc8dfefdf341.png
    In this problem, we're looking for the intervals of \(x\) values that make \(y\) less than or equal to zero. First, we identify the roots of the function:
    clipboard_e1ec85eef24e411dee8323fc1cd74e19d.png
    Next, we'll identify the intervals where the \(y\) values are less than zero:
    clipboard_e23c9b391486aa6db2497514cd64fa7d8.png
    So, the solution to the original inequality is:
    \(x^{4}-2 x^{3}-5 x^{2}+8 x+3 \leq 0\)
    \(-2.034 \leq x \leq-0.320\) OR \(1.806 \leq x \leq 2.549\)
    In the next example we'll be looking to identify both the intervals where \(y\) is greater than zero, and the intervals where \(y\) is less than zero.

    Example
    Determine the interval(s) for which \(x^{3}+5 x^{2}+5 x+1 \geq 0\)
    Determine the interval(s) for which \(x^{3}+5 x^{2}+5 x+1<0\)
    Once again, we'll start by graphing the function to find the roots:
    clipboard_e83e7f20222ec2c78613c50fea074f1cd.png

    Now that we've indentified the roots, we can determine where the \(y\) values are greater than zero and where they're less than zero.

    For \(y \geq 0,\) we can see that this corresponds to: \(-3.732 \leq x \leq-1\) OR \(x \geq-0.268\)
    For \(y<0,\) we can see that this corresponds to: \(x<-3.732 \mathrm{OR}-1<x<-0.268\)

    Exercises 2.3
    1) Determine the interval(s) for which \(x^{3}-4 x^{2}+2 x+3 \geq 0\)
    Determine the interval(s) for which \(x^{3}-4 x^{2}+2 x+3<0\)
    2) Determine the interval(s) for which \(4 x^{3}-4 x^{2}-19 x+10 \geq 0\)
    Determine the interval(s) for which \(4 x^{3}-4 x^{2}-19 x+10<0\)
    3) Determine the interval(s) for which \(x^{3}-2.5 x^{2}-7 x-1.5 \geq 0\)
    Determine the interval(s) for which \(x^{3}-2.5 x^{2}-7 x-1.5<0\)
    4) Determine the interval(s) for which \(x^{3}-3.5 x^{2}+0.5 x+5 \geq 0\)
    Determine the interval(s) for which \(x^{3}-3.5 x^{2}+0.5 x+5<0\)
    5) Determine the interval(s) for which \(6 x^{4}-13 x^{3}+2 x^{2}-4 x+15 \geq 0\)
    Determine the interval(s) for which \(6 x^{4}-13 x^{3}+2 x^{2}-4 x+15<0\)
    6) Determine the interval(s) for which \(x^{4}-x^{3}-x^{2}+3 x-5 \geq 0\)
    Determine the interval(s) for which \(x^{4}-x^{3}-x^{2}+3 x-5<0\)
    7) Determine the interval(s) for which \(3 x^{4}+3 x^{3}-14 x^{2}-x+3 \geq 0\)
    Determine the interval(s) for which \(3 x^{4}+3 x^{3}-14 x^{2}-x+3<0\)
    8) Determine the interval(s) for which \(4 x^{4}-4 x^{3}-7 x^{2}+4 x+3 \geq 0\)
    Determine the interval(s) for which \(4 x^{4}-4 x^{3}-7 x^{2}+4 x+3<0\)

    Determine the interval(s) that satisfy each inequality.
    9) \(\quad x^{3}+x^{2}-5 x+3 \leq 0\)
    10) \(\quad x^{3}-7 x+6>0\)
    11) \(\quad x^{3}-13 x+12>0\)
    12) \(\quad x^{4}-10 x^{2}+9<0\)
    13) \(\quad 6 x^{4}-9 x^{2}-4 x+12 \geq 0\)
    14) \(\quad x^{4}-5 x^{3}+20 x-16>0\)
    15) \(\quad x^{3}-2 x^{2}-7 x+6 \leq 0\)
    16) \(\quad x^{4}-6 x^{3}+2 x^{2}-5 x+2 \leq 0\)
    17) \(\quad 2 x^{4}+3 x^{3}-2 x^{2}-4 x+2>0\)
    18) \(\quad x^{5}+5 x^{4}-4 x^{3}+3 x^{2}-2 \leq 0\)


    This page titled 2.3: Solution of Polynomial Inequalities by Graphing is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Richard W. Beveridge.

    • Was this article helpful?