Skip to main content
Mathematics LibreTexts

4.6: Combining Polynomials Using Multiplication

  • Page ID
    49365
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Multiplying a Polynomial by a Monomial

    Multiplying a polynomial by a monomial is a direct application of the distributive property.

    Distributive Property

    The product of a monomial a and a binomial b plus c is equal to ab plus ac. This is the distributive property. In the expression, there are two arrows originating from the monomial, a, and pointing towards the terms b and c of the binomial.

    The distributive property suggests the following rule.

    Multiplying a Polynomial by a Monomial

    To multiply a polynomial by a monomial, multiply every term of the polynomial by the monomial and then add the resulting products together.

    Sample Set A

    Example \(\PageIndex{1}\)

    \(\begin{aligned}
    3(x+9) &=3 \cdot x+3 \cdot 9 \\
    &=3 x+27
    \end{aligned}\)

    Example \(\PageIndex{2}\)

    \(\begin{aligned}
    6\left(x^{3}-2 x\right)=6\left(x^{3}+(-2 x)\right) &=6 \cdot x^{3}+6(-2 x) \\
    &=6 x^{3}-12 x
    \end{aligned}\)

    Example \(\PageIndex{3}\)

    \(\begin{aligned}
    (x-7) x &=x \cdot x+x(-7) \\
    &=x^{2}-7 x
    \end{aligned}\)

    Example \(\PageIndex{4}\)

    \(\begin{aligned}
    8 a^{2}\left(3 a^{4}-5 a^{3}+a\right) &=8 a^{2} \cdot 3 a^{4}+8 a^{2}\left(-5 a^{3}\right)+8 a^{2} \cdot a \\
    &=24 a^{6}-40 a^{5}+8 a^{3}
    \end{aligned}\)

    Example \(\PageIndex{5}\)

    \(\begin{aligned}
    4 x^{2} y^{7} z\left(x^{6} y+8 y^{2} z^{2}\right) &=4 x^{2} y^{7} z \cdot x^{5} y+4 x^{2} y^{7} z \cdot 8 y^{2} z^{2} \\
    &=4 x^{7} y^{8} z+32 x^{2} y^{9} z^{3}
    \end{aligned}\)

    Example \(\PageIndex{6}\)

    \(10 a b^{2} c\left(125 a^{2}\right)=1250 a^{3} b^{2} c\)

    Example \(\PageIndex{7}\)

    \(\begin{aligned}
    \left(9 x^{2} z+4 w\right)\left(5 z w^{3}\right) &=9 x^{2} z \cdot 5 z w^{3}+4 w \cdot 5 z w^{3} \\
    &=45 x^{2} z^{2} w^{3}+20 z w^{4} \\
    &=45 x^{2} w^{3} z^{2}+20 w^{4} z
    \end{aligned}\)

    Practice Set A

    Determine the following products.

    Practice Problem \(\PageIndex{1}\)

    \(3(x + 8)\)

    Answer

    \(3x+24\)

    Practice Problem \(\PageIndex{2}\)

    \((2+a)4\)

    Answer

    \(4a+8\)

    Practice Problem \(\PageIndex{3}\)

    \((a^2 - 2b + 6)2a\)

    Answer

    \(2a^3 - 4ab + 12a\)

    Practice Problem \(\PageIndex{4}\)

    \(8a^2b^3(2a + 7b + 3)\)

    Answer

    \(16a^3b^3 + 56a^2b^4 + 24a^2b^3\)

    Practice Problem \(\PageIndex{5}\)

    \(4x(2x^5 + 6x^4 - 8x^3 - x^2 + 9x - 11)\)

    Answer

    \(8x^6 + 24x^5 - 32x^4 - 4x^3 + 36x^2 - 44x\)

    Practice Problem \(\PageIndex{6}\)

    \((3a^2b)(2ab^2 + 4b^3)\)

    Answer

    \(6a^3b^3 + 12a^2b^4\)

    Practice Problem \(\PageIndex{7}\)

    \(5mn(m^2n^2 + m + n^0), n \not = 0\)

    Answer

    \(5m^3n^3 + 5m^2n + 5mn\)

    Practice Problem \(\PageIndex{8}\)

    \(6.03(2.11a^3 + 8.00a^2b)\)

    Answer

    \(12.7233a^3 + 48.24a^2b\)

    Simplifying \(+(a+b)\) and \(−(a+b)\)

    \(+(a+b)\) and \(−(a+b)\)

    Oftentimes, we will encounter multiplications of the form

    \(+1(a+b)\) or \(−1(a+b)\)

    These terms will actually appear as

    \(+(a+b)\) and \(−(a+b)\)

    Using the distributive property, we can remove the parentheses.

    Removal of a set of parentheses preceded by a plus sign using the distributive property. See the longdesc for a full description.

    The parentheses have been removed and the sign of each term has remained the same.

    Removal of a set of parentheses preceded by a minus sign using the distributive property. See the longdesc for a full description.

    The parentheses have been removed and the sign of each term has been changed to its opposite.

    1. To remove a set of parentheses preceded by a "+" sign, simply remove the parentheses and leave the sign of each term the same.
    2. To remove a set of parentheses preceded by a “−” sign, remove the parentheses and change the sign of each term to its opposite sign.

    Sample Set B

    Simplify the expressions.

    Example \(\PageIndex{8}\)

    \((6x−1)\).

    This set of parentheses is preceded by a “\(+\)’’ sign (implied). We simply drop the parentheses.

    \((6x−1)=6x−1\)

    Example \(\PageIndex{9}\)

    \((14a^2 - 6a^3b^2 + ab^4) = 14a^2b^3 - 6a^3b^2 + ab^4\)

    Example \(\PageIndex{10}\)

    \(-(21a^2 + 7a - 18)\)

    This set of parentheses is preceded by a “\(−\)” sign. We can drop the parentheses as long as we change the sign of every term inside the parentheses to its opposite sign.

    \(-(21a^2 + 7a - 18) = -21a^2 - 7a + 18\)

    Example \(\PageIndex{11}\)

    \(-(7y^3 - 2y^2 + 9y + 1) = -7y^3 + 2y^2 - 9y - 1\)

    Practice Set B

    Simplify by removing the parentheses.

    Practice Problem \(\PageIndex{9}\)

    \((2a+3b)\)

    Answer

    \(2a + 3b\)

    Practice Problem \(\PageIndex{10}\)

    \((a^2 - 6a + 10)\)

    Answer

    \(a^2 - 6a + 10\)

    Practice Problem \(\PageIndex{11}\)

    \(−(x+2y)\)

    Answer

    \(−x−2y\)

    Practice Problem \(\PageIndex{12}\)

    \(−(5m−2n)\)

    Answer

    \(−5m+2n\)

    Practice Problem \(\PageIndex{13}\)

    \(-(-3s^2 - 7s + 9)\)

    Answer

    \(3s^2 + 7s - 9\)

    Multiplying a Polynomial by a Polynomial

    Since we can consider an expression enclosed within parentheses as a single quantity, we have, by the distributive property,

    Finding the product of the binomials 'a plus b' and 'c plus d', using the distributive property. See the longdesc for a full description.

    For convenience, we will use the commutative property of addition to write this expression so that the first two terms contain a and the second two contain b.

    \((a+b)(c+d)=ac+ad+bc+bd\)

    This method is commonly called the FOIL method.

    • F: First Terms
    • O: Outer Terms
    • I: Inner Terms
    • L: Last Terms

    \((a+b)(2+3)=\underbrace{(a+b)+(a+b)}_{2 \text { terms }}+\underbrace{(a+b)+(a+b)+(a+b)}_{3 \text { terms }}\)

    Rearranging,

    \(\begin{array}{l}
    =a+a+b+b+a+a+a+b+b+b \\
    =2 a+2 b+3 a+3 b
    \end{array}\)

    Combining like terms,

    \(\begin{array}{l}
    =5a + 5b
    \end{array}\)

    This use of the distributive property suggests the following rule.

    Multiplying of a Polynomial by a Polynomial

    To multiply two polynomials together, multiply every term of one polynomial by every term of the other polynomial.

    Sample Set C

    Perform the following multiplications and simplify.

    Example \(\PageIndex{12}\)

    Finding the product of 'a plus six' and 'a plus three' using the FOIL method. See the longdesc for a full description.

    With some practice, the second and third terms can be combined mentally.

    Example \(\PageIndex{13}\)

    Finding the product of two binomials 'x plus y' and 'two x plus four y' using the FOIL method. See the longdesc for a full description.

    Example \(\PageIndex{14}\)

    Finding the product of two polynomials 'x squared plus four' and 'x squared plus seven x plus two' using the FOIL method. See the longdesc for a full description.

    Example \(\PageIndex{15}\)

    Finding the product of two binomials 'a minus four' and 'a minus three' using the FOIL method. See the longdesc for a full description.

    Example \(\PageIndex{16}\)

    \(\begin{aligned}
    (m-3)^{2} &=(m-3)(m-3) \\
    &=m \cdot m+m(-3)-3 \cdot m-3(-3) \\
    &=m^{2}-3 m-3 m+9 \\
    &=m^{2}-6 m+9
    \end{aligned}\)

    Example \(\PageIndex{17}\)

    \(\begin{aligned}
    (x+5)^{3} &=(x+5)(x+5)(x+5) & \text { Associate the first two factors. } \\
    &=[(x+5)(x+5)](x+5) \\
    &=\left[x^{2}+5 x+5 x+25\right](x+5) \\
    &=\left[x^{2}+10 x+25\right](x+5) \\
    &=x^{2} \cdot x+x^{2} \cdot 5+10 x \cdot x+10 x \cdot 5+25 \cdot x+25 \cdot 5 \\
    &=x^{3}+5 x^{2}+10 x^{2}+50 x+25 x+125 \\
    &=x^{3}+15 x^{2}+75 x+125
    \end{aligned}\)

    Practice Set C

    Find the following products and simplify.

    Practice Problem \(\PageIndex{14}\)

    \((a+1)(a+4)\)

    Answer

    \(a^2 + 5a + 4\)

    Practice Problem \(\PageIndex{15}\)

    \((m−9)(m−2)\)

    Answer

    \(m^2 - 11m + 18\)

    Practice Problem \(\PageIndex{16}\)

    \((2x+4)(x+5)\)

    Answer

    \(2x^2 + 14x + 20\)

    Practice Problem \(\PageIndex{17}\)

    \((x+y)(2x−3y)\)

    Answer

    \(2x^2 - xy - 3y^2\)

    Practice Problem \(\PageIndex{18}\)

    \((3a^2 - 1)(5a^2 + a)\)

    Answer

    \(15a^4 + 3a^3 - 5a^2 - a\)

    Practice Problem \(\PageIndex{19}\)

    \((2x^2y^3 + xy^2)(5x^3y^2 + x^2y)\)

    Answer

    \(10x^5y^5 + 7x^4y^4 + x^3y^3\)

    Practice Problem \(\PageIndex{20}\)

    \((a+3)(a^2+3a+6)\)

    Answer

    \(a^3 + 6a^2 + 15a + 18\)

    Practice Problem \(\PageIndex{21}\)

    \((a+4)(a+4)\)

    Answer

    \(a^2 + 8a + 16\)

    Practice Problem \(\PageIndex{22}\)

    \((r−7)(r−7)\)

    Answer

    \(r^2 - 14r + 49\)

    Practice Problem \(\PageIndex{23}\)

    \((x+6)^2\)

    Answer

    \(x^2 + 12x + 36\)

    Practice Problem \(\PageIndex{24}\)

    \((y-8)^2\)

    Answer

    \(y^2 - 16y + 64\)

    Sample Set D

    Perform the following additions and subtractions.

    Example \(\PageIndex{18}\)

    \(3x+7+(x-3)\). We must first remove the parentheses. They are preceded by a "\(+\)" sign, so we remove them and leave the sign of each term the same.
    \(3x+7+x-3\) Combine like terms.
    \(4x+4\)

    Example \(\PageIndex{19}\)

    \(5 y^{3}+11-\left(12 y^{3}-2\right)\). We first remove the parentheses. They are preceded by a "\(-\)" sign, so we remove them and change the sign of each term inside them.
    \(5y^{3}+11-12 y^{3}+2\) Combine like terms.
    \(-7y^{3}+13\)

    Example \(\PageIndex{20}\)

    Add \(4x^2 + 2x - 8\) to \(3x^2 - 7x - 10\)

    \(\begin{array}{l}
    \left(4 x^{2}+2 x-8\right)+\left(3 x^{2}-7 x-10\right) \\
    4 x^{2}+2 x-8+3 x^{2}-7 x-10 \\
    7 x^{2}-5 x-18
    \end{array}\)

    Example \(\PageIndex{21}\)

    Subtract \(8x^2 - 5x + 2\) from \(3x^2 + x - 12\).

    \(\begin{array}{l}
    \left(3 x^{2}+x-12\right)-\left(8 x^{2}-5 x+2\right) \\
    3 x^{2}+x-12-8 x^{2}+5 x-2 \\
    -5 x^{2}+6 x-14
    \end{array}\)

    Be very careful not to write this problem as:

    \(3x^2 + x - 12 - 8x^2 - 5x + 2\)

    This form has us subtracting only the very first term, \(8x^2\), rather than the entire expression. Use parentheses.

    Another incorrect form is:

    \(8x^2 - 5x + 2 - (3x^2 + x - 12)\)

    This form has us performing the subtraction in the wrong order.

    Practice Set D

    Perform the following additions and subtractions.

    Practice Problem \(\PageIndex{25}\)

    \(6y^2 + 2y - 1 + (5y^2 - 18)\)

    Answer

    \(11y^2 + 2y - 19\)

    Practice Problem \(\PageIndex{26}\)

    \((9m−n)−(10m+12n)\)

    Answer

    \(−m−13n\)

    Practice Problem \(\PageIndex{27}\)

    Add \(2r^2 + 4r - 1\) to \(3r^2 - r - 7\)

    Answer

    \(5r^2 + 3r - 8\)

    Practice Problem \(\PageIndex{28}\)

    Subtract \(4s−3\) from \(7s+8\).

    Answer

    Add texts here. Do not delete this text first.

    Exercises

    For the following problems, perform the multiplication and combine any like terms.

    Exercise \(\PageIndex{1}\)

    \(7(x+6)\)

    Answer

    \(7x+42\)

    Exercise \(\PageIndex{2}\)

    \(4(y+3)\)

    Exercise \(\PageIndex{3}\)

    \(6(y+4)\)

    Answer

    \(6y+24\)

    Exercise \(\PageIndex{4}\)

    \(8(m+7)\)

    Exercise \(\PageIndex{5}\)

    \(5(a−6)\)

    Answer

    \(5a−30\)

    Exercise \(\PageIndex{6}\)

    \(2(x−10)\)

    Exercise \(\PageIndex{7}\)

    \(3(4x+2)\)

    Answer

    \(12x+6\)

    Exercise \(\PageIndex{8}\)

    \(6(3x+4)\)

    Exercise \(\PageIndex{9}\)

    \(9(4y−3)\)

    Answer

    \(36y−27\)

    Exercise \(\PageIndex{10}\)

    \(5(8m−6)\)

    Exercise \(\PageIndex{11}\)

    \(−9(a+7)\)

    Answer

    \(−9a−63\)

    Exercise \(\PageIndex{12}\)

    \(−3(b+8)\)

    Exercise \(\PageIndex{13}\)

    \(−4(x+2)\)

    Answer

    \(−4x−8\)

    Exercise \(\PageIndex{14}\)

    \(−6(y+7)\)

    Exercise \(\PageIndex{15}\)

    \(−3(a−6)\)

    Answer

    \(−3a+18\)

    Exercise \(\PageIndex{16}\)

    \(−9(k−7)\)

    Exercise \(\PageIndex{17}\)

    \(−5(2a+1)\)

    Answer

    \(−10a−5\)

    Exercise \(\PageIndex{18}\)

    \(−7(4x+2)\)

    Exercise \(\PageIndex{19}\)

    \(−3(10y−6)\)

    Answer

    \(−30y+18\)

    Exercise \(\PageIndex{20}\)

    \(−8(4y−11)\)

    Exercise \(\PageIndex{21}\)

    \(x(x+6)\)

    Answer

    \(x^2 + 6x\)

    Exercise \(\PageIndex{22}\)

    \(y(y+7)\)

    Exercise \(\PageIndex{23}\)

    \(m(m−4)\)

    Answer

    \(m^2 - 4m\)

    Exercise \(\PageIndex{24}\)

    \(k(k−11)\)

    Exercise \(\PageIndex{25}\)

    \(3x(x+2)\)

    Answer

    \(3x^2 + 6x\)

    Exercise \(\PageIndex{26}\)

    \(4y(y+7)\)

    Exercise \(\PageIndex{27}\)

    \(6a(a−5)\)

    Answer

    \(6a^2 - 30a\)

    Exercise \(\PageIndex{28}\)

    \(9x(x−3)\)

    Exercise \(\PageIndex{29}\)

    \(3x(5x+4)\)

    Answer

    \(15x^2 + 12x\)

    Exercise \(\PageIndex{30}\)

    \(4m(2m+7)\)

    Exercise \(\PageIndex{31}\)

    \(2b(b−1)\)

    Answer

    \(2b^2 - 2b\)

    Exercise \(\PageIndex{32}\)

    \(7a(a−4)\)

    Exercise \(\PageIndex{33}\)

    \(3x^2(5x^2 + 4)\)

    Answer

    \(15x^4 + 12x^2\)

    Exercise \(\PageIndex{34}\)

    \(9y^3(3y^2 + 2)\)

    Exercise \(\PageIndex{35}\)

    \(4a^4(5a^3 + 3a^2 + 2a)\)

    Answer

    \(20a^7 + 12a^6 + 8a^5\)

    Exercise \(\PageIndex{36}\)

    \(2x^4(6x^3 - 5x^2 - 2x + 3)\)

    Exercise \(\PageIndex{37}\)

    \(-5x^2(x + 2)\)

    Answer

    \(-5x^3 - 10x^2\)

    Exercise \(\PageIndex{38}\)

    \(-6y^3(y + 5)\)

    Exercise \(\PageIndex{39}\)

    \(2x^2y(3x^2y^2 - 6x)\)

    Answer

    \(6x^4y^3 - 12x^3y\)

    Exercise \(\PageIndex{40}\)

    \(8a^3b^2c(2ab^3 + 3b)\)

    Exercise \(\PageIndex{41}\)

    \(b^5x^2(2bx - 11)\)

    Answer

    \(2b^6x^3 - 11b^5x^2\)

    Exercise \(\PageIndex{42}\)

    \(4x(3x^2-6x+10)\)

    Exercise \(\PageIndex{43}\)

    \(9y^3(2y^4 - 3y^3 + 8y^2 + y - 6)\)

    Answer

    \(18y^7 - 27y^6 + 72y^5 + 9y^4 - 54y^3\)

    Exercise \(\PageIndex{44}\)

    \(-a^2b^3(6ab^4 + 5ab^3 - 8b^2 + 7b - 2)\)

    Exercise \(\PageIndex{45}\)

    \((a+4)(a+2)\)

    Answer

    \(a^2 + 6a + 8\)

    Exercise \(\PageIndex{46}\)

    \((x+1)(x+7)\)

    Exercise \(\PageIndex{47}\)

    \((y+6)(y−3)\)

    Answer

    \(y^2 + 3y - 18\)

    Exercise \(\PageIndex{48}\)

    \((t+8)(t−2)\)

    Exercise \(\PageIndex{49}\)

    \((i−3)(i+5)\)

    Answer

    \(i^2 + 2i - 15\)

    Exercise \(\PageIndex{50}\)

    \((x−y)(2x+y)\)

    Exercise \(\PageIndex{51}\)

    \((3a−1)(2a−6)\)

    Answer

    \(6a^2 - 20a + 6\)

    Exercise \(\PageIndex{52}\)

    \((5a−2)(6a−8)\)

    Exercise \(\PageIndex{53}\)

    \((6y+11)(3y+10)\)

    Answer

    \(18y^2 + 93y + 110\)

    Exercise \(\PageIndex{54}\)

    \((2t+6)(3t+4)\)

    Exercise \(\PageIndex{55}\)

    \((4+x)(3−x)\)

    Answer

    \(-x^2 - x + 12\)

    Exercise \(\PageIndex{56}\)

    \((6+a)(4+a)\)

    Exercise \(\PageIndex{57}\)

    \((x^2 + 2)(x + 1)\)

    Answer

    \(x^3 + x^2 + 2x + 2\)

    Exercise \(\PageIndex{58}\)

    \((x^2 + 5)(x + 4)\)

    Exercise \(\PageIndex{59}\)

    \((3x^2 - 5)(2x^2 + 1)\)

    Answer

    \(6x^4 - 7x^2 - 5\)

    Exercise \(\PageIndex{60}\)

    \((4a^2b^3 - 2a)(5a^2b - 3b)\)

    Exercise \(\PageIndex{61}\)

    \((6x^3y^4 + 6x)(2x^2y^3 + 5y)\)

    Answer

    \(12x^5y^7 + 30x^3y^5 + 12x^3y^3 + 30xy\)

    Exercise \(\PageIndex{62}\)

    \(5(x−7)(x−3)\)

    Exercise \(\PageIndex{63}\)

    \(4(a+1)(a−8)\)

    Answer

    \(4a^2 - 28a - 32\)

    Exercise \(\PageIndex{64}\)

    \(a(a−3)(a+5)\)

    Exercise \(\PageIndex{65}\)

    \(x(x+1)(x+4)\)

    Answer

    \(x^3 + 5x^2 + 4x\)

    Exercise \(\PageIndex{66}\)

    \(y^3(y-3)(y-2)\)

    Answer

    \(y^5 - 5y^4 + 6y^3\)

    Exercise \(\PageIndex{67}\)

    \(2a^2(a + 4)(a + 3)\)

    Exercise \(\PageIndex{68}\)

    \(5y^6(y + 7)(y + 1)\)

    Answer

    \(5y^8 + 40y^7 + 35y^6\)

    Exercise \(\PageIndex{69}\)

    \(ab^2(a^2 - 2b)(a + b^4)\)

    Exercise \(\PageIndex{70}\)

    \(x^3y^2(5x^2y^2 - 3)(2xy - 1)\)

    Answer

    \(10x^6y^5 - 5x^5y^4 - 6x^4y^3 + 3x^3y^2\)

    Exercise \(\PageIndex{71}\)

    \(6(a^2 + 5a + 3)\)

    Exercise \(\PageIndex{72}\)

    \(8(c^3 + 5c + 11)\)

    Answer

    \(8c^3 + 40c + 88\)

    Exercise \(\PageIndex{73}\)

    \(3a^2(2a^3 - 10a^2 - 4a + 9)\)

    Exercise \(\PageIndex{74}\)

    \(6a^3b^3(4a^2b^6 + 7ab^8 + 2b^{10} +14)\)

    Answer

    \(24a^5b^9 + 42a^4b^{11} + 12a^3b^{13}+18a^3b^3\)

    Exercise \(\PageIndex{75}\)

    \((a-4)(a^2 + a - 5)\)

    Exercise \(\PageIndex{76}\)

    \((x-7)(x^2 + x - 3)\)

    Answer

    \(x^3 - 6x^2 - 10x + 21\)

    Exercise \(\PageIndex{77}\)

    \((2x + 1)(5x^3 + 6x^2 + 8)\)

    Exercise \(\PageIndex{78}\)

    \((7a^2 + 2)(3a^5 - 4a^3 - a - 1)\)

    Answer

    \(21a^7 - 22a^5 - 15a^3 - 7a^2 - 2a - 2\)

    Exercise \(\PageIndex{79}\)

    \((x+y)(2x^2 + 3xy + 5y^2)\)

    Exercise \(\PageIndex{80}\)

    \((2a+b)(5a^2 + 4a^2b - b - 4)\)

    Answer

    \(10a^3 + 8a^3b + 4a^2b^2 + 5a^2b - b^2 - 8a - 4b - 2ab\)

    Exercise \(\PageIndex{81}\)

    \((x+3)^2\)

    Exercise \(\PageIndex{82}\)

    \((x+1)^2\)

    Answer

    \(x^2 + 2x + 1\)

    Exercise \(\PageIndex{83}\)

    \((x-5)^2\)

    Exercise \(\PageIndex{84}\)

    \((a+2)^2\)

    Answer

    \(a^2 + 4a + 4\)

    Exercise \(\PageIndex{85}\)

    \((a-9)^2\)

    Exercise \(\PageIndex{86}\)

    \(-(3x-5)^2\)

    Answer

    \(-9x^2 + 30x - 25\)

    Exercise \(\PageIndex{87}\)

    \(-(8t+7)^2\)

    For the following problems, perform the indicated operations and combine like terms.

    Exercise \(\PageIndex{88}\)

    \(3x^2 + 5x - 2 + (4x^2 - 10x - 5)\)

    Answer

    \(7x^2 - 5x - 7\)

    Exercise \(\PageIndex{89}\)

    \(-2x^3 + 4x^2 + 5x - 8 + (x^3 - 3x^2 - 11x + 1)\)

    Exercise \(\PageIndex{90}\)

    \(-5x - 12xy + 4y^2 + (-7x + 7xy - 2y^2)\)

    Answer

    \(2y^2 - 5xy - 12x\)

    Exercise \(\PageIndex{91}\)

    \((6a^2 - 3a + 7) - 4a^2 + 2a - 8\)

    Exercise \(\PageIndex{92}\)

    \((5x^2 - 24x - 15) + x^2 - 9x + 14\)

    Answer

    \(6x^2 - 33x - 1\)

    Exercise \(\PageIndex{93}\)

    \((3x^3 - 7x^2 + 2) + (x^3 + 6)\)

    Exercise \(\PageIndex{94}\)

    \((9a^2b - 3ab + 12ab^2) + ab^2 + 2ab\)

    Answer

    \(9a^2b + 13ab^2 - ab\)

    Exercise \(\PageIndex{95}\)

    \(6x^2 - 12x + (4x^2 - 3x - 1) + 4x^2 - 10x - 4\)

    Exercise \(\PageIndex{96}\)

    \(5a^3 - 2a - 26 + (4a^3 - 11a^2 + 2a) - 7a + 8a^3 + 20\)

    Answer

    \(17a^3 - 11a^2 - 7a - 6\)

    Exercise \(\PageIndex{97}\)

    \(2xy - 15 - (5xy + 4)\)

    Exercise \(\PageIndex{98}\)

    Add \(4x + 6\) to \(8x - 15\).

    Answer

    \(12x - 9\)

    Exercise \(\PageIndex{99}\)

    Add \(5y^2 - 5y + 1\) to \(-9y^2 + 4y - 2\)

    Exercise \(\PageIndex{100}\)

    Add \(3(x+6)\) to \(4(x-7)\)

    Answer

    \(7x - 10\)

    Exercise \(\PageIndex{101}\)

    Add \(-2(x^2 - 4)\) to \(5(x^2 + 3x - 1)\)

    Exercise \(\PageIndex{102}\)

    Add four times \(5x + 2\) to three times \(2x - 1\)

    Answer

    \(26x + 5\)

    Exercise \(\PageIndex{103}\)

    Add five times \(-3x + 2\) to seven times \(4x + 3\)

    Exercise \(\PageIndex{104}\)

    Add \(-4\) times \(9x + 6\) to \(-2\) times \(-8x - 3\).

    Answer

    \(-20x - 18\)

    Exercise \(\PageIndex{105}\)

    Subtract \(6x^2 - 10x + 4\) from \(3x^2 - 2x + 5\)

    Exercise \(\PageIndex{106}\)

    Subtract \(a^2 - 16\) from \(a^2 - 16\)

    Answer

    \(0\)

    Exercises for Review

    Exercise \(\PageIndex{107}\)

    Simplify \((\dfrac{15x^2y^4}{5xy^2})^4\)

    Exercise \(\PageIndex{108}\)

    Express the number \(198,000\) using scientific notation.

    Answer

    \(1.98 \times 10^5\)

    Exercise \(\PageIndex{109}\)

    How many \(4a^2x^3\)'s are there in \(-16a^4x^5\)?

    Exercise \(\PageIndex{110}\)

    State the degree of the polynomial \(4xy^3 + 3x^5y - 5x^3y^3\), and write the numerical coefficient of each term.

    Answer

    Degree is 6; 4, 3, -5

    Exercise \(\PageIndex{111}\)

    Simplify \(3(4x-5) + 2(5x-2) - (x-3)\).


    This page titled 4.6: Combining Polynomials Using Multiplication is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?