Skip to main content
Mathematics LibreTexts

10.11: Proficiency Exam

  • Page ID
    60076
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Proficiency Exam

    For the quadratic equations in the following problems, specify the values of \(a, b\), and \(c\).

    Exercise \(\PageIndex{1}\)

    \(2y^2 - 3y + 10 = 0\)

    Answer

    \(a=2,b=−3,c=10\)

    Exercise \(\PageIndex{2}\)

    \(10b^2 = 3b\)

    Answer

    \(a=10,b=−3,c=0\)

    For the following problems, use the zero-factor property to solve each quadratic equation.

    Exercise \(\PageIndex{3}\)

    \((3x+5)(x−1)=0\)

    Answer

    \(x = -\dfrac{5}{3}, 1\)

    Exercise \(\PageIndex{4}\)

    \(3b(2b−1)=0\)

    Answer

    \(b = 0, \dfrac{1}{2}\)

    Exercise \(\PageIndex{5}\)

    \((a - 8)^2 = 0\)

    Answer

    \(a=8\)

    For the following problems, solve each quadratic equation by factoring.

    Exercise \(\PageIndex{6}\)

    \(4x^2 - 16 = 0\)

    Answer

    \(x=−2,2\)

    Exercise \(\PageIndex{7}\)

    \(y^2 - 12y + 32 = 0\)

    Answer

    \(y=4,8\)

    Exercise \(\PageIndex{8}\)

    \(a^2 - 5a = 14\)

    Answer

    \(−2,7\)

    Exercise \(\PageIndex{9}\)

    \(6a^2 = 10 - 11a\)

    Answer

    \(a = -\dfrac{5}{2}, \dfrac{2}{3}\)

    Exercise \(\PageIndex{10}\)

    \(2x^2 = -2 - 5x\)

    Answer

    \(x = -2, -\dfrac{1}{2}\)

    Exercise \(\PageIndex{11}\)

    \(x^3 - 25x = 0\)

    Answer

    \(x=0,−5,5\)

    For the following problems, solve each quadratic equation by extraction of roots.

    Exercise \(\PageIndex{12}\)

    \(c^2 = 81\)

    Answer

    \(c=−9,9\)

    Exercise \(\PageIndex{13}\)

    \(x^2 = 15\)

    Answer

    \(x = -\sqrt{15}, \sqrt{15}\)

    Exercise \(\PageIndex{14}\)

    \(3a^2 - 18 = 0\)

    Answer

    \(a = -\sqrt{6}, \sqrt{6}\)

    Exercise \(\PageIndex{15}\)

    \((x - 5)^2 = 1\)

    Answer

    \(x=4,6\)

    Exercise \(\PageIndex{16}\)

    \((y + 11)^2 - 9 = 0\)

    Answer

    \(y=−8,−14\)

    Exercise \(\PageIndex{17}\)

    \(y^2 - 25z^2 = 0\) for \(y\).

    Answer

    \(y=−5z,5z\)

    Exercise \(\PageIndex{18}\)

    \(6a^2 - 18b^2c^2\) for \(a\)

    Answer

    \(a = \pm bc\sqrt{3}\)

    For the following problems, solve each quadratic equation using the quadratic formula.

    Exercise \(\PageIndex{19}\)

    \(x^2 - 6x - 16 = 0\)

    Answer

    \(x=−2,8\)

    Exercise \(\PageIndex{20}\)

    \(y^2 - 2y - 7 = 0\)

    Answer

    \(y = 1 + 2\sqrt{2}\)

    Exercise \(\PageIndex{21}\)

    \((m + 2)^2 - 5 = 0\)

    Answer

    \(m = -2 \pm \sqrt{5}\)

    Exercise \(\PageIndex{22}\)

    \((x + b)^2 = c^2\)

    Answer

    \(x = -b \pm c\)

    Exercise \(\PageIndex{23}\)

    \((x+1)(x+4)=6\)

    Answer

    \(x = \dfrac{-5 \pm \sqrt{33}}{2}\)

    Exercise \(\PageIndex{24}\)

    \(5z^2 - 5z - 5 = 2z^2 - z\)

    Answer

    \(z = \dfrac{2 \pm \sqrt{19}}{3}\)

    Exercise \(\PageIndex{25}\)

    \(2m^2 = 5m\)

    Answer

    \(m = 0, \dfrac{5}{2}\)

    For the following problems, solve each quadratic equation by completing the square.

    Exercise \(\PageIndex{26}\)

    \(x^2 + 6x - 8 = 0\)

    Answer

    \(x = -3 \pm \sqrt{17}\)

    Exercise \(\PageIndex{27}\)

    \(2x^2 + 7x - 12 = 0\)

    Answer

    \(x = \dfrac{-7 \pm \sqrt{145}}{4}\)

    Exercise \(\PageIndex{28}\)

    The product of two consecutive odd integers is 143. What are they?

    Answer

    11 and 13 or −11 and −13

    Exercise \(\PageIndex{29}\)

    A study of the air quality by an environmental group suggests that t years from now the level of carbon monoxide in the air, in parts per million, will be given by the quadratic equation

    \(A = 0.4t^2 + 0.1t + 3.1\)

    where \(A\) represents the amount of carbon monoxide in the air.

    a) What is the level, in parts per million, of carbon monoxide in the air now?

    b) How many years from now will the level of carbon monoxide be at 18.1 parts per million?

    Answer

    (a) 3.1 

     (b) 6 years from now

    Exercise \(\PageIndex{30}\)

    The length of a rectangle is 6 inches longer than the width of the rectangle. Find the dimensions of the rectangle if the area is 112 square feet.

    Answer

    width: \(\dfrac{-1 + \sqrt{1793}}{4}\)

    length: \(\dfrac{1 + \sqrt{1793}}{4}\)

    For the following problems, construct the graphs of the following equations.

    Exercise \(\PageIndex{31}\)

    \(y = x^2 - 3\)

    An xy coordinate plane with gridlines, labeled negative five and five with increments of one units on both axes.

    Answer

    A graph of a parabola passing through seven points with coordinates negative three, six; negative two, one; negative one, negative two; zero, negative three; one, negative two; two, one; and three, six.

    Exercise \(\PageIndex{32}\)

    \(y = (x + 1)^2\)

    An xy coordinate plane with gridlines, labeled negative five and five with increments of one units on both axes.

    Answer

    A graph of a parabola passing through five points with coordinates negative three, four; negative two, one; negative one, zero; zero, one; and one, four.

    Exercise \(\PageIndex{33}\)

    \(y = (x-2)^2 + 3\)

    An xy coordinate plane with gridlines, labeled negative five and five with increments of one units on both axes.

    Answer

    A graph of a parabola passing through three points with coordinates one, four; two, three; and three, four.

    For the following problems, write the equation that corresponds to each graph.

    Exercise \(\PageIndex{34}\)

    A graph of a quadratic equation passing through three points with coordinates one, two; two, one; and three, two.

    Answer

    \(y = (x-2)^2 + 1\) or \(y = x^2 - 4x + 5\)

    Exercise \(\PageIndex{35}\)

    A graph of a quadratic equation passing through three points with coordinates negative four, negative three;negative three, negative two; and negative two, negtaive three.

    Answer

    \(y = -(x + 3)^2 - 2\) or \(y = -x^2 - 6x - 11\)


    This page titled 10.11: Proficiency Exam is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?