11.5E: Exercises
- Page ID
- 30575
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Practice Makes Perfect
In the following exercises, graph.
- \(\frac{x^{2}}{9}-\frac{y^{2}}{4}=1\)
- \(\frac{x^{2}}{25}-\frac{y^{2}}{9}=1\)
- \(\frac{x^{2}}{16}-\frac{y^{2}}{25}=1\)
- \(\frac{x^{2}}{9}-\frac{y^{2}}{36}=1\)
- \(\frac{y^{2}}{25}-\frac{x^{2}}{4}=1\)
- \(\frac{y^{2}}{36}-\frac{x^{2}}{16}=1\)
- \(16 y^{2}-9 x^{2}=144\)
- \(25 y^{2}-9 x^{2}=225\)
- \(4 y^{2}-9 x^{2}=36\)
- \(16 y^{2}-25 x^{2}=400\)
- \(4 x^{2}-16 y^{2}=64\)
- \(9 x^{2}-4 y^{2}=36\)
- Answer
-
1.
Figure 11.4.33 3.
Figure 11.4.34 5.
Figure 11.4.35 7.
Figure 11.4.36 9.
Figure 11.4.37 11.
Figure 11.4.38
In the following exercises, graph.
- \(\frac{(x-1)^{2}}{16}-\frac{(y-3)^{2}}{4}=1\)
- \(\frac{(x-2)^{2}}{4}-\frac{(y-3)^{2}}{16}=1\)
- \(\frac{(y-4)^{2}}{9}-\frac{(x-2)^{2}}{25}=1\)
- \(\frac{(y-1)^{2}}{25}-\frac{(x-4)^{2}}{16}=1\)
- \(\frac{(y+4)^{2}}{25}-\frac{(x+1)^{2}}{36}=1\)
- \(\frac{(y+1)^{2}}{16}-\frac{(x+1)^{2}}{4}=1\)
- \(\frac{(y-4)^{2}}{16}-\frac{(x+1)^{2}}{25}=1\)
- \(\frac{(y+3)^{2}}{16}-\frac{(x-3)^{2}}{36}=1\)
- \(\frac{(x-3)^{2}}{25}-\frac{(y+2)^{2}}{9}=1\)
- \(\frac{(x+2)^{2}}{4}-\frac{(y-1)^{2}}{9}=1\)
- Answer
-
1.
Figure 11.4.39 3.
Figure 11.4.40 5.
Figure 11.4.41 7.
Figure 11.4.42 9.
Figure 11.4.43
In the following exercises,
- Write the equation in standard form and
- Graph.
- \(9 x^{2}-4 y^{2}-18 x+8 y-31=0\)
- \(16 x^{2}-4 y^{2}+64 x-24 y-36=0\)
- \(y^{2}-x^{2}-4 y+2 x-6=0\)
- \(4 y^{2}-16 x^{2}-24 y+96 x-172=0\)
- \(9 y^{2}-x^{2}+18 y-4 x-4=0\)
- Answer
-
1.
- \(\frac{(x-1)^{2}}{4}-\frac{(y-1)^{2}}{9}=1\)
Figure 11.4.44 3.
- \(\frac{(y-2)^{2}}{9}-\frac{(x-1)^{2}}{9}=1\)
Figure 11.4.45 5.
- \(\frac{(y+1)^{2}}{1}-\frac{(x+2)^{2}}{9}=1\)
Figure 11.4.46
In the following exercises, identify the type of graph.
-
- \(x=-y^{2}-2 y+3\)
- \(9 y^{2}-x^{2}+18 y-4 x-4=0\)
- \(9 x^{2}+25 y^{2}=225\)
- \(x^{2}+y^{2}-4 x+10 y-7=0\)
-
- \(x=-2 y^{2}-12 y-16\)
- \(x^{2}+y^{2}=9\)
- \(16 x^{2}-4 y^{2}+64 x-24 y-36=0\)
- \(16 x^{2}+36 y^{2}=576\)
- Answer
-
2.
- Parabola
- Circle
- Hyperbola
- Ellipse
In the following exercises, graph each equation.
- \(\frac{(y-3)^{2}}{9}-\frac{(x+2)^{2}}{16}=1\)
- \(x^{2}+y^{2}-4 x+10 y-7=0\)
- \(y=(x-1)^{2}+2\)
- \(\frac{x^{2}}{9}+\frac{y^{2}}{25}=1\)
- \((x+2)^{2}+(y-5)^{2}=4\)
- \(9 x^{2}-4 y^{2}+54 x+8 y+41=0\)
- \(x=-y^{2}-2 y+3\)
- \(16 x^{2}+9 y^{2}=144\)
- Answer
-
2.
Figure 11.4.47 4.
Figure 11.4.48 6.
Figure 11.4.49 8.
Figure 11.4.50
- In your own words, define a hyperbola and write the equation of a hyperbola centered at the origin in standard form. Draw a sketch of the hyperbola labeling the center, vertices, and asymptotes.
- Explain in your own words how to create and use the rectangle that helps graph a hyperbola.
- Compare and contrast the graphs of the equations \(\frac{x^{2}}{4}-\frac{y^{2}}{9}=1\) and \(\frac{y^{2}}{9}-\frac{x^{2}}{4}=1\).
- Explain in your own words, how to distinguish the equation of an ellipse with the equation of a hyperbola.
- Answer
-
2. Answers may vary
4. Answers may vary
Self Check
a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

b. On a scale of 1-10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?