8.10.E: Problems on Generalized Integration
- Page ID
- 25142
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Fill in the missing details in the proofs of this section. Prove Note 3.
Treat Corollary 1 (ii) as a definition of
\[
\int_{A} f d s
\]
for \(s: \mathcal{M} \rightarrow E\) and elementary and integrable \(f,\) even if \(E \neq E^{n}\left(C^{n}\right) .\)
Hence deduce Corollary \(1(\mathrm{i})(\mathrm{vi})\) for this more general case.
Using Lemma 2 in §7, with \(m=v_{s}, s: \mathcal{M} \rightarrow E,\) construct
\[
\int_{A} f d s
\]
as in Definition 2 of §7 for the case \(v_{s} A \neq \infty .\) Show that this agrees with Problem 2 if \(f\) is elementary and integrable. Then prove linearity for functions with \(v_{s}\)-finite support as in §7.
Define
\[
\int_{A} f d s \quad(s: \mathcal{M} \rightarrow E)
\]
also for \(v_{s} A=\infty .\)
[Hint: Set \(\left.m=v_{s} \text { in Lemma } 3 \text { of } §7 .\right]\)
Prove Theorems 1 to 3 for the general case, \(s: \mathcal{M} \rightarrow E\) (see Problem 4 ).
[Hint: Argue as in §7.]
From Problems \(2-4,\) deduce Definition 2 as a theorem in the case \(E=\) \(E^{n}\left(C^{n}\right) .\)
Let \(s, s_{k}: \mathcal{M} \rightarrow E(k=1,2, \ldots)\) be any set functions. Let \(A \in \mathcal{M}\) and
\[
\mathcal{M}_{A}=\{X \in \mathcal{M} | X \subseteq A\} .
\]
Prove that if
\[
\left(\forall X \in \mathcal{M}_{A}\right) \quad \lim _{k \rightarrow \infty} s_{k} X=s X ,
\]
then
\[
\lim _{k \rightarrow \infty} v_{s_{k}} A=v_{s} A ,
\]
provided \(\lim _{k \rightarrow \infty} v_{s_{k}}\) exists.
[Hint: Using Problem 2 in Chapter 7, §11, fix a finite disjoint sequence \(\left\{X_{i}\right\} \subseteq \mathcal{M}_{A} .\)
Then
\[
\sum_{i}\left|s X_{i}\right|=\sum_{i} \lim _{k \rightarrow \infty}\left|s_{k} X_{i}\right|=\lim _{k \rightarrow \infty} \sum_{i}\left|s_{k} X_{i}\right| \leq \lim _{k \rightarrow \infty} v_{s_{k}} A .
\]
Infer that
\[
v_{s} A \leq \lim _{k \rightarrow \infty} v_{s k} A .
\]
Also,
\[
(\forall \varepsilon>0)\left(\exists k_{0}\right)\left(\forall k>k_{0}\right) \quad \sum_{i}\left|s_{k} X_{i}\right| \leq \sum_{i}\left|s X_{i}\right|+\varepsilon \leq v_{s} A+\varepsilon .
\]
Proceed.]
Let \((X, \mathcal{M}, m)\) and \((Y, \mathcal{N}, n)\) be two generalized measure spaces \((X \in\) \(M, Y \in \mathcal{N}) \text { such that } m n \text { is defined (Note } 1) .\) Set
\[
\mathcal{C}=\left\{A \times B | A \in \mathcal{M}, B \in \mathcal{N}, v_{m} A<\infty, v_{n} B<\infty\right\}
\]
and \(s(A \times B)=m A \cdot n B\) for \(A \times B \in \mathcal{C}\).
Define a Fubini map as in §8, Part IV, dropping, however, \(\int_{X \times Y} f d p\) from Fubini property (c) temporarily.
Then prove Theorem 1 in §8, including formula \((1),\) for Fubini maps so modified.
[Hint: For \(\left.\sigma \text { -additivity, use our present Theorem } 2 \text { twice. Omit } \mathcal{P}^{*} .\right]\)
Continuing Problem \(7,\) let \(\mathcal{P}\) be the \(\sigma\)-ring generated by \(\mathcal{C}\) in \(X \times Y .\) Prove that \((\forall D \in \mathcal{P}) C_{D}\) is a Fubini map (as modified).
[Outline: Proceed as in Lemma 5 of \(§8 . \text { For step (ii), use Theorem 2 in } §10 \text { twice. }]\)
Further continuing Problems 7 and \(8,\) define
\[
(\forall D \in \mathcal{P}) \quad p D=\int_{X} \int_{Y} C_{D} d n d m .
\]
Show that \(p\) is a generalized measure, with \(p=s\) on \(\mathcal{C},\) and that
\[
(\forall D \in \mathcal{P}) \quad p D=\int_{X \times Y} C_{D} d p ,
\]
with the following convention: If \(X \times Y \notin \mathcal{P},\) we set
\[
\int_{X \times Y} f d p=\int_{H} f d p
\]
whenever \(H \in \mathcal{P}, f\) is \(p\)-integrable on \(H,\) and \(f=0\) on \(-H .\)
\(\quad\) Verify that this is unambiguous, i.e.,
\[
\int_{X \times Y} f d p
\]
so defined is independent of the choice of \(H\).
Finally, let \(\overline{p}\) be the completion of \(p\) (Chapter \(7,\) §6, Problem 15 ); let \(\mathcal{P}^{*}\) be its domain.
Develop the rest of Fubini theory "imitating" Problem 12 in §8.
Signed Lebesgue-Stielttjes \((L S)\) measures in \(E^{1}\) are defined as shown in Chapter 7, §11, Part \(V .\) Using the notation of that section, prove the following:
(i) Given a Borel-Stieltjes measure \(\sigma_{\alpha}^{*}\) in an interval \(I \subseteq E^{1}\) (or an LS measure \(s_{\alpha}=\overline{\sigma}^{*}_{\alpha}\) in \(I\) ), there are two monotone functions \(g \uparrow\) and \(h \uparrow(\alpha=g-h)\) such that
\[
m_{g}=s_{\alpha}^{+} \text {and } m_{h}=s_{\alpha}^{-} ,
\]
both satisfying formula ( 3 ) of Chapter 7, §11, inside \(I\).
(ii) If \(f\) is \(s_{\alpha}\)-integrable on \(A \subseteq I,\) then
\[
\int_{A} f d s_{\alpha}=\int_{A} f d m_{g}-\int_{A} f d m_{h}
\]
for any \(g \uparrow\) and \(h \uparrow\) (finite) such that \(\alpha=g-h\).
[Hints: (i) Define \(s_{\alpha}^{+}\) and \(s_{\alpha}^{-}\) by formula (3) of Chapter \(7,\) §7. Then arguing as in Theorem 2 in Chapter 7, §9, find \(g \uparrow\) and \(h \uparrow\) with \(m_{g}=s_{\alpha}^{+}\) and \(m_{h}=s_{\alpha}^{-}\).
(ii) First let \(A=(a, b] \subseteq I,\) then \(A \in B .\) Proceed.]