Skip to main content
Mathematics LibreTexts

15.6: Chapter 7

  • Page ID
    129936
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Your Turn

    7.1
    1. \(4 \times 15 = 60\)
    7.2
    1. \(4 \times 15 \times 3 \times 2 = 360\)
    7.3
    1. \(3 \times 10 \times 10 \times 10 \times 10 \times 10 \times 26 \times 26 \times 26 = {\text{5,272,800,000}}\)
    7.4
    1. 120
    7.5
    1. 720
    2. 132
    3. 70
    7.6
    1. 30
    2. 24,024
    3. 5,814
    7.7
    1. \(_{15}{P_3} = 2{,}730\)
    7.8
    1. combination
    2. combination
    7.9
    1. 15
    2. 45
    3. 2,002
    7.10
    1. 30,856
    2. 111,930
    7.11
    1. 290,004
    7.12
    1. \(\{\heartsuit ,\spadesuit ,\clubsuit ,\diamondsuit\}\)
    2. {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}
    3. {1, 2, 3, 4}
    4. {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
    7.13
    1. Independent
    2. Dependent
    7.14
    1. {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}
    7.15
    1. {J\(\heartsuit\) Q\(\heartsuit\), J\(\heartsuit\) K\(\heartsuit\), Q\(\heartsuit\) J\(\heartsuit\), Q\(\heartsuit\) K\(\heartsuit\), K\(\heartsuit\) J\(\heartsuit\), K\(\heartsuit\) Q\(\heartsuit\)}
    7.16
    1. \(P(\text{H} < 5) = 1\)
    2. \(0 < P(\text{H} < 4) < 1\)
    3. \(P(\text{H} ≥ 5) = 0\)
    7.17
    1. \(\frac{1}{6}\)
    2. \(\frac{2}{3}\)
    3. \(\frac{1}{2}\)
    7.18
    1. \(\frac{5}16\)
    7.19
    1. \(\frac{1}{3}\)
    2. \(\frac{1}{2}\)
    3. \(\frac{2}{3}\)
    7.20
    1. \(\frac13
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[1]/div/div[20]/div/span[2], line 1, column 2
    
    = 1.3\% \)
    7.21
    1. theoretical
    2. subjective
    3. empirical
    7.22
    1. \(\frac1316\)
    7.23
    1. \(\frac14443680 = \frac{3}910\)
    7.24
    1. \(1 - \frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[1]/div/div[24]/div[1]/span[1], line 1, column 5
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[1]/div/div[24]/div[1]/span[2], line 1, column 5
    
    \approx 10.7\%\)
    2. \(\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[1]/div/div[24]/div[2]/span[1], line 1, column 5
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[1]/div/div[24]/div[2]/span[2], line 1, column 5
    
    \approx 0.86\%\)
    7.25
    1. \(13{:}3\)
    2. \(12{:}4 = 3{:}1\)
    7.26
    1. The odds for \(E\) are \(4{:}1\) and the odds against \(E\) are \(1{:}4\).
    7.27
    1. \(P(E) = \frac{1}16\)
    2. \(P(E) = \frac2.53.5 \approx 0.714\)
    7.28
    1. Mutually exclusive
    2. Not mutually exclusive
    3. Mutually exclusive
    7.29
    1. \(\frac{4}10 + \frac{2}10 = \frac{3}{5}\)
    2. Not appropriate; the events are not mutually exclusive.
    3. \(\frac{3}10 + \frac{2}10 = \frac{1}{2}\)
    7.30
    1. \(\frac{1}{2}\)
    2. \(\frac{1}{2}\)
    3. \(\frac{2}{3}\)
    7.31
    1. \(\frac{1}{3}\)
    2. \(1\)
    3. \(\frac{2}{3}\)
    7.32
    1. \(\frac{3}28\)
    2. \(\frac{3}56\)
    3. \(\frac{3}28\)
    7.33
    1.
    Roll Probability
    1 \(\frac{1}{3}\)
    2 \(\frac{1}{4}\)
    3 \(\frac{1}{6}\)
    4 \(\frac{1}12\)
    5 \(\frac{1}12\)
    6 \(\frac{1}12\)
    7.34
    1. Not binomial (more than two outcomes)
    2. Not binomial (not independent)
    3. Binomial
    4. Not binomial (number of trials isn’t fixed)
    7.35
    1. 0.146
    2. 0.190
    3. 0.060
    7.36
    1. 0.2972
    2. 0.6615
    3. 0.0919
    4. 0.5207
    5. 0.3643
    7.37
    1. \(\frac10{3}\)
    2. \(\frac{3}{2}\)
    3. \(\frac25{4}\) = $6.25
    7.38
    1. If you roll the special die many times, the mean of the numbers showing will be around 3.33.
    2. If you repeat the coin-flipping experiment many times, the mean of the number of heads you get will be around 1.5.
    3. If you play this game many times, the mean of your winnings will be around $10.
    7.39
    1. If the player bets on 7, the expected value is \(- \$ 0.17\).
    2. If the player bets on 12, the expected value is \(- \$ 0.14\).
    3. If the player bets on any craps, the expected value is \(- \$ 0.11\).
    The best bet for the player is any craps; the best bet for the casino is the bet on 7.

    Check Your Understanding

    1. 540
    2. 14
    3. 1,024
    4. 800
    5. 25,920
    6. 120
    7. 120
    8. 1,320
    9. 1,680
    10. \(_{15}{P_4} = 32{,}760\)
    11. permutations
    12. combinations
    13. 66
    14. 560
    15. 20
    16. 560
    17. {0, 1, 2, 3, 4, 5, 6}
    18.
    Crinkle Fries Curly Fries Onion Rings
    8 Nuggets 8 nuggets with crinkle fries 8 nuggets with curly fries 8 nuggets with onion rings
    12 Nuggets 12 nuggets with crinkle fries 12 nuggets with curly fries 12 nuggets with onion rings
    19. A tree diagram with three stages. The tree diagram shows a node branching into three nodes labeled H, E, and S. The node, H branches into two nodes labeled A and B. Node, E leads to a node labeled C. Node, S branches into three nodes labeled J, K, and L. The possible outcomes are as follows: H A, H B, E C, S J, S K, and S L.
    20. {8 nuggets with crinkle fries, 8 nuggets with curly fries, 8 nuggets with onion rings, 12 nuggets with crinkle fries, 12 nuggets with curly fries, 12 nuggets with onion rings}
    21. {history with Anderson, history with Burr, English with Carter, sociology with Johnson, sociology with Kirk, sociology with Lambert}
    22. \(\frac{1}{4}\)
    23. \(\frac{1}{2}\)
    24. \(\frac{1}{2}\)
    25. 0
    26. theoretically
    27. subjectively
    28. empirically
    29. \({\text{number of heads}} > 20\)
    30. 89.9%
    31. \(\frac
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[21]/span[1], line 1, column 2
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[21]/span[2], line 1, column 5
    
    \approx 0.278\%\)
    32. \(\frac
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[22]/span[1], line 1, column 2
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[22]/span[2], line 1, column 5
    
    \approx 0.079\%\)
    33. \(\frac
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[23]/span[1], line 1, column 2
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[23]/span[2], line 1, column 5
    
    \approx 0.16\%\)
    34. \(\frac
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[24]/span[1], line 1, column 2
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[24]/span[2], line 1, column 5
    
    \approx 1.67\%\)
    35. \(\frac
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[25]/span[1], line 1, column 2
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[25]/span[2], line 1, column 5
    
    \approx 1.9\%\)
    36. \(\frac
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[26]/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/15:_Answer_Key/15.06:_Chapter_7), /content/body/div[26]/span[2], line 1, column 5
    
    \approx 1.9\%\)
    37. \(1{:}2\)
    38. \(5{:}1\)
    39. \(1{:}1\)
    40. \(3{:}5\)
    41. \(11{:}2\)
    42. \(\frac{4}13\)
    43. \(\frac{5}12\)
    44. \(\frac{3}{5}\)
    45. \(\frac{3}{5}\)
    46. \(\frac{3}{5}\)
    47. \(\frac{2}{5}\)
    48. \(\frac{2}{5}\)
    49. \(\frac{3}10\)
    50. \(\frac{1}{4}\)
    51. \(\frac{1}{9}\)
    52. \(\frac{1}{6}\)
    53. \(\frac{2}15\)
    54. \(\frac{4}45\)
    55. \(\frac{8}45\)
    56. No (more than two outcomes)
    57. Yes
    58. No (number of trials is not fixed)
    59. 0.9453
    60. 0.1366
    61. 0.8230
    62. 4.1
    63. If you roll this die many times, the mean of the numbers rolled will be around 4.1.
    64. $0.417
    65. If you play this game many times, the mean of the amount won/lost each time will be about 42 cents.
    66. Yes; the expected value is positive.

    This page titled 15.6: Chapter 7 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?