3.5: Exercises
- Page ID
- 59942
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1. List out the elements of the set “The letters of the word Mississippi.”
2. List out the elements of the set “Months of the year.”
3. Write a verbal description of the set {3, 6, 9}.
4. Write a verbal description of the set {a, e, i, o, u}.
5. Is {1, 3, 5} a subset of the set of odd integers?
6. Is {A, B, C} a subset of the set of letters of the alphabet?
For problems 7-12, consider the sets below, and indicate if each statement is true or false.
\(A\) = {1, 2, 3, 4, 5} \(B\) = {1, 3, 5} \(C\) = {4, 6} \(U\) = {numbers from 0 to 10}
7. \(3 ∊ B\)
8. \(5 ∊ C\)
9. \(B ⊂ A\)
10. \(C ⊂ A\)
11. \(C ⊂ B\)
12. \(C ⊂ D\)
Using the sets from above, and treating \(U\) as the Universal set, find each of the following:
13. \(A ⋃ B\)
14. \(A ⋃ C\)
15. \(A ⋂ C\)
16. \(B ⋂ C\)
17. \(A^c\)
18. \(B^c\)
Let D = {b, a, c, k}, E = {t, a, s, k}, F = {b, a, t, h}. Using these sets, find the following:
19. \(D^c ⋂ E\)
20. \(F^c ⋂ D\)
21. \((D ⋂ E) ⋃ F\)
22. \(D ⋂ (E ⋃ F)\)
23. \((F ⋂ E)^c ⋂ D\)
24. \((D ⋃ E)^c ⋂ F\)
Create a Venn diagram to illustrate each of the following:
25. \((F ⋂ E) ⋃ D\)
26. \((D ⋃ E)^c ⋂ F\)
27. \((F^c ⋂ E^c) ⋂ D\)
28. \((D ⋃ E) ⋃ F\)
Write an expression for the shaded region.
29. 30.
31. 32.
Let A = {1, 2, 3, 4, 5} B = {1, 3, 5} C = {4, 6}. Find the cardinality of the given set.
33. \(\text{n}(A)\)
34. \(\text{n}(B)\)
35. \(\text{n}(A ⋃ C)\)
36. \(\text{n}(A ⋂ C)\)
The Venn diagram here shows the cardinality of each set. Use this in 37-40 to find the cardinality of the given set.
37. \(\text{n}(A ⋂ C)\)
38. \(\text{n}(B ⋃ C)\)
39. \(\text{n}(A ⋂ B ⋂ C^c)\)
40. \(\text{n}(A ⋂ B^c ⋂ C)\)
41. If \(\text{n}(G) = 20\), \(\text{n}(H) = 30\), \(\text{n}(G ⋂ H) = 5\), find \(\text{n}(G ⋃ H)\).
42. If \(\text{n}(G) = 5\), \(\text{n}(H) = 8\), \(\text{n}(G ⋂ H) = 4\), find \(\text{n}(G ⋃ H)\).
43. A survey was given asking whether they watch movies at home from Netflix, Redbox, or a video store. Use the results to determine how many people use Redbox.
- 52 only use Netflix
- 62 only use Redbox
- 24 only use a video store
- 16 use only a video store and Redbox
- 48 use only Netflix and Redbox
- 30 use only a video store and Netflix
- 10 use all three
- 25 use none of these
44. A survey asked buyers whether color, size, or brand influenced their choice of cell phone. The results are below. How many people were influenced by brand?
- 5 only said color
- 8 only said size
- 16 only said brand
- 20 said only color and size
- 42 said only color and brand
- 53 said only size and brand
- 102 said all three
- 20 said none of these
45. Use the given information to complete a Venn diagram, then determine: a) how many students have seen exactly one of these movies, and b) how many had seen only Star Wars.
- 18 had seen The Matrix (M)
- 24 had seen Star Wars (SW)
- 20 had seen Lord of the Rings (LotR)
- 10 had seen M and SW
- 14 had seen LotR and SW
- 12 had seen M and LotR
- 6 had seen all three
46. A survey asked people what alternative transportation modes they use. Using the data to complete a Venn diagram, then determine: a) what percent of people only ride the bus, and b) how many people don’t use any alternate transportation.
- 30% use the bus
- 20% ride a bicycle
- 25% walk
- 5% use the bus and ride a bicycle
- 10% ride a bicycle and walk
- 12% use the bus and walk
- 2% use all three