3.5: Calculating Power- Shapley-Shubik Power Index
- Page ID
- 34187
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The Shapley-Shubik power index was introduced in 1954 by economists Lloyd Shapley and Martin Shubik, and provides a different approach for calculating power.
In situations like political alliances, the order in which players join an alliance could be considered the most important consideration. In particular, if a proposal is introduced, the player that joins the coalition and allows it to reach quota might be considered the most essential. The Shapley-Shubik power index counts how likely a player is to be pivotal. What does it mean for a player to be pivotal?
First, we need to change our approach to coalitions. Previously, the coalition \(\left\{P_{1}, P_{2}\right\}\) and \(\left\{P_{2}, P_{1}\right\}\) would be considered equivalent, since they contain the same players. We now need to consider the order in which players join the coalition. For that, we will consider sequential coalitions – coalitions that contain all the players in which the order players are listed reflect the order they joined the coalition. For example, the sequential coalition
\(<P_{2}, P_{1}, P_{3}>\) would mean that \(P_2\) joined the coalition first, then \(P_1\), and finally \(P_3\). The angle brackets < > are used instead of curly brackets to distinguish sequential coalitions.
A sequential coalition lists the players in the order in which they joined the coalition.
A pivotal player is the player in a sequential coalition that changes a coalition from a losing coalition to a winning one. Notice there can only be one pivotal player in any sequential coalition.
In the weighted voting system \([8: 6, 4, 3, 2]\), which player is pivotal in the sequential coalition \(<P_{3}, P_{2}, P_{4}, P_{1}>\)?
Solution
The sequential coalition shows the order in which players joined the coalition. Consider the running totals as each player joins:
\(\begin{array}{lll}P_{3} & \text { Total weight: } 3 & \text { Not winning } \\ P_{3}, P_{2} & \text { Total weight: } 3+4=7 & \text { Not winning } \\ P_{3}, P_{2}, P_{4} & \text { Total weight: } 3+4+2=9 & \text { Winning } \\ R_{2}, P_{3}, P_{4}, P_{1} & \text { Total weight: } 3+4+2+6=15 & \text { Winning }\end{array}\)
Since the coalition becomes winning when \(P_4\) joins, \(P_4\) is the pivotal player in this coalition.
To calculate the Shapley-Shubik Power Index:
- List all sequential coalitions
- In each sequential coalition, determine the pivotal player
- Count up how many times each player is pivotal
- Convert these counts to fractions or decimals by dividing by the total number of sequential coalitions
How many sequential coalitions should we expect to have? If there are N players in the voting system, then there are \(N\) possibilities for the first player in the coalition, \(N – 1\) possibilities for the second player in the coalition, and so on. Combining these possibilities, the total number of coalitions would be:\(N(N-1)(N-2)(N-3) \cdots(3)(2)(1)\). This calculation is called a factorial, and is notated \(N!\) The number of sequential coalitions with \(N\) players is \(N!\)
How many sequential coalitions will there be in a voting system with 7 players?
Solution
There will be \(7!\) sequential coalitions. \(7 !=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040\)
As you can see, computing the Shapley-Shubik power index by hand would be very difficult for voting systems that are not very small.
Consider the weighted voting system \([6: 4, 3, 2]\). We will list all the sequential coalitions and identify the pivotal player. We will have 3! = 6 sequential coalitions. The coalitions are listed, and the pivotal player is underlined.
\(\begin{aligned}
&<P_{1}, \underline{P}_{2}, P_{3}>\quad<P_{1}, \underline{P}_{3}, P_{2}>\quad<P_{2}, \underline{P}_{1}, P_{3}>\\
&<P_{2}, P_{3}, \underline{P}_{1}>\quad<P_{3}, P_{2}, \underline{P}_{1}>\quad<P_{3}, \underline{P}_{1}, P_{2}>
\end{aligned}\)
Solution
\(\mathrm{P}_{1}\) is pivotal 4 times, \(\mathrm{P}_{2}\) is pivotal 1 time, and \(\mathrm{P}_{3}\) is pivotal 1 time.
\(\begin{array}{|l|l|l|}
\hline \textbf { Player } & \textbf { Times pivotal } & \textbf { Power index } \\
\hline P_{1} & 4 & 4 / 6=66.7 \% \\
\hline P_{2} & 1 & 1 / 6=16.7 \% \\
\hline P_{3} & 1 & 1 / 6=16.7 \% \\
\hline
\end{array}\)
For comparison, the Banzhaf power index for the same weighted voting system would be \(\mathrm{P}_{1}: 60 \%, \mathrm{P}_{2}: 20 \%, \mathrm{P}_{3}: 20 \%\). While the Banzhaf power index and Shapley-Shubik power index are usually not terribly different, the two different approaches usually produce somewhat different results.
Find the Shapley-Shubik power index for the weighted voting system \(\bf{[36: 20, 17, 15]}\).
- Answer
-
Listing all sequential coalitions and identifying the pivotal player:
\(\begin{array} {lll} {<P_{1}, \underline{P}_{2}, P_{3}>} & {<P_{1}, P_{3}, \underline{P}_{2}>} & {<P_{2}, \underline{P}_{1}, P_{3}>} \\ {<P_{2}, P_{3}, \underline{P}_{1}>} & {<P_{3}, P_{2}, \underline{P}_{1}>} & {<P_{3}, P_{1}, \underline{P}_{2}>} \end{array}\)
\(\mathrm{P}_{1}\) is pivotal 3 times, \(\mathrm{P}_{2}\) is pivotal 3 times, and \(\mathrm{P}_{3}\) is pivotal 0 times.
\(\begin{array}{|l|l|l|}
\hline \textbf { Player } & \textbf { Times pivotal } & \textbf { Power index } \\
\hline P_{1} & 3 & 3 / 6=50 \% \\
\hline P_{2} & 3 & 3 / 6=50 \% \\
\hline P_{3} & 0 & 0 / 6=0 \% \\
\hline
\end{array}\)