3.6: Exercises(Skills)
- Page ID
- 34188
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Consider the weighted voting system \([47: 10,9,9,5,4,4,3,2,2]\)
- How many players are there?
- What is the total number (weight) of votes?
- What is the quota in this system?
- Consider the weighted voting system \([31: 10,10,8,7,6,4,1,1]\)
- How many players are there?
- What is the total number (weight) of votes?
- What is the quota in this system?
- Consider the weighted voting system \([q: 7,5,3,1,1]\)
- What is the smallest value that the quota \(q\) can take?
- What is the largest value that the quota \(q\) can take?
- What is the value of the quota if at least two-thirds of the votes are required to pass a motion?
- Consider the weighted voting system \([q: 10,9,8,8,8,6]\)
- What is the smallest value that the quota \(q\) can take?
- What is the largest value that the quota \(q\) can take?
- What is the value of the quota if at least two-thirds of the votes are required to pass a motion?
- Consider the weighted voting system \([13: 13, 6, 4, 2]\)
- Identify the dictators, if any.
- Identify players with veto power, if any
- Identify dummies, if any.
- Consider the weighted voting system \([11: 9, 6, 3, 1]\)
- Identify the dictators, if any.
- Identify players with veto power, if any
- Identify dummies, if any.
- Consider the weighted voting system \([19: 13, 6, 4, 2]\)
- Identify the dictators, if any.
- Identify players with veto power, if any
- Identify dummies, if any.
- Consider the weighted voting system \([17: 9, 6, 3, 1]\)
- Identify the dictators, if any.
- Identify players with veto power, if any
- Identify dummies, if any.
- Consider the weighted voting system \([15: 11, 7, 5, 2]\)
- What is the weight of the coalition \(\left\{P_{1}, P_{2}, P_{4}\right\}\)
- In the coalition \(\left\{P_{1}, P_{2}, P_{4}\right\}\) which players are critical?
- Consider the weighted voting system \([17: 13, 9, 5, 2]\)
- What is the weight of the coalition \(\left\{P_{1}, P_{2}, P_{3}\right\}\)
- In the coalition \(\left\{P_{1}, P_{2}, P_{3}\right\}\) which players are critical?
- Find the Banzhaf power distribution of the weighted voting system
\([27: 16, 12, 11, 3]\)
- Find the Banzhaf power distribution of the weighted voting system
\([33: 18, 16, 15, 2]\)
- Consider the weighted voting system \([q: 15, 8, 3, 1]\) Find the Banzhaf power distribution of this weighted voting system,
- When the quota is 15
- When the quota is 16
- When the quota is 18
- Consider the weighted voting system \([q: 15, 8, 3, 1]\) Find the Banzhaf power distribution of this weighted voting system,
- When the quota is 19
- When the quota is 23
- When the quota is 26
- Consider the weighted voting system \([17: 13, 9, 5, 2]\). In the sequential coalition \(<P_{3}, P_{2}, P_{1}, P_{4}>\) which player is pivotal?
- Consider the weighted voting system \([15: 13, 9, 5, 2]\). In the sequential coalition \(\left\langle P_{1}, P_{4}, P_{2}, P_{3}\right >\) which player is pivotal?
- Find the Shapley-Shubik power distribution for the system \([24: 17, 13, 11]\)
- Find the Shapley-Shubik power distribution for the system \([25: 17, 13, 11]\)