Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

18.8: Growth Models

  • Page ID
    41798
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    1.

    1. \(P_{0}=20 . P_{n}=P_{n-1}+5\)
    2. \(P_{n}=20+5 n\)

    3.

    1. \(P_{1}=P_{0}+15=40+15=55 . P_{2}=55+15=70\)
    2. \(P_{n}=40+15 n\)
    3. \(P_{10}=40+15(10)=190\) thousand dollars
    4. \(40+15 n=100\) when \(n=4\) years.

    5. Grew 64 in 8 weeks: 8 per week

    1. \(P_{n}=3+8 n\)
    2. \(187=3+8 n . n=23\) weeks

    7.

    1. \(P_{0}=200\) (thousand), \(P_{n}=(1+.09) P_{n-1}\) where \(n\) is years after 2000
    2. \(P_{n}=200(1.09)^{n}\)
    3. \(P_{16}=200(1.09)^{16}=794.061(\text { thousand })=794,061\)
    4. \(200(1.09)^{n}=400 . \quad n=\log (2) / \log (1.09)=8.043 .\) In 2008

    9. Let \(n=0\) be \(1983 . \quad P_{n}=1700(2.9)^{n} . \quad 2005\) is \(n=22 . \quad P_{22}=1700(2.9)^{22}=25,304,914,552,324\) people. Clearly not realistic, but mathematically accurate.

    11. If n is in hours, better to start with the explicit form. \(P_{0}=300 . P_{4}=500=300(1+r)^{4}\)

    \(500 / 300=(1+r)^{4} . \quad 1+r=1.136 . \quad r=0.136\)

    1. \(P_{0}=300 . \quad P_{n}=(1.136) P_{n-1}\)
    2. \(P_{n}=300(1.136)^{n}\)
    3. \(P_{24}=300(1.136)^{24}=6400\) bacteria
    4. \(300(1.136)^{n}=900 . n=\log (3) / \log (1.136)=\) about 8.62 hours

    13.

    1. \(P_{0}=100 \quad P_{n}=P_{n-1}+0.70\left(1-P_{n-1} / 2000\right) P_{n-1}\)
    2. \(P_{1}=100+0.70(1-100 / 2000)(100)=166.5\)
    3. \(P_{2}=166.5+0.70(1-166.5 / 2000)(166.5)=273.3\)

    15. To find the growth rate, suppose \(n=0\) was \(1968 .\) Then \(P_{0}\) would be 1.60 and \(P_{8}=2.30=1.60(1+r)^{8}, r=0.0464 .\) since we want \(n=0\) to correspond to 1960 , then we don't know \(P_{0}\), but \(P_{8}\) would \(1.60=P_{0}(1.0464)^{8}\). \(P_{0}=1.113\)

    1. \(P_{n}=1.113(1.0464)^{n}\)
    2. \(P_{0}=\$ 1.113,\) or about \(\$ 1.11\)
    3. 1996 would be \(n=36 . \quad P_{36}=1.113(1.0464)^{36}=\$ 5.697 .\) Actual is slightly lower.

    17. The population in the town was 4000 in 2005, and is growing by 4% per year.


    18.8: Growth Models is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by David Lippman via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?