18.9: Finance
- Page ID
- 41799
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1. \(A=200+.05(200)=\$ 210\)
3. \(\mathrm{I}=200 . \mathrm{t}=13 / 52(13 \text { weeks out of } 52 \text { in a year }) . \mathrm{P}_{0}=9800\)
\(200=9800(\mathrm{r})(13 / 52) \mathrm{r}=0.0816=8.16 \%\) annual rate
5. \(P_{10}=300(1+.05 / 1)^{10(1)}=\$ 488.67\)
7.
- \(P_{20}=2000(1+.03 / 12)^{20(12)}=\$ 3641.51\) in 20 years
- \(3641.51-2000=\$ 1641.51\) in interest
9. \(P_{8}=P_{0}(1+.06 / 12)^{8(12)}=6000 \cdot P_{0}=\$ 3717.14\) would be needed
11.
- \(P_{30}=\frac{200\left((1+0.03 / 12)^{30(12)}-1\right)}{0.03 / 12}=\$ 116,547.38\)
- \(200(12)(30)=\$ 72,000\)
- \(\$ 116,547.40-\$ 72,000=\$ 44,547.38\) of interest
13.
- \(P_{30}=800,000=\frac{d\left((1+0.06 / 12)^{30(12)}-1\right)}{0.06 / 12} \mathrm{d}=\$ 796.40\) each month
- \(\$ 796.40(12)(30)=\$ 286,704\)
- \(\$ 800,000-\$ 286,704=\$ 513,296\) in interest
15.
- \(P_{0}=\frac{30000\left(1-(1+0.08 / 1)^{-25(1)}\right)}{0.08 / 1}=\$ 320,243.29\)
- \(30000(25)=\$ 750,000\)
- \(\$ 750,000-\$ 320,243.29=\$ 429,756.71\)
17. \(P_{0}=500,000=\frac{d\left(1-(1+0.06 / 12)^{-20(12)}\right)}{0.06 / 12} \mathrm{d}=\$ 3582.16\) each month
19.
\(P_{0}=\frac{700\left(1-(1+0.05 / 12)^{-30(12)}\right)}{0.05 / 12}=\) a \(\$ 130,397.13\) loan
\(700(12)(30)=\$ 252,000\)
\(\$ 252,200-\$ 130,397.13=\$ 121,602.87\) in interest
21. \(P_{0}=25,000=\frac{d\left(1-(1+0.02 / 12)^{-48}\right)}{0.02 / 12}=\$ 542.38\) a month
23.
Down payment of \(10 \%\) is \(\$ 20,000\), leaving \(\$ 180,000\) as the loan amount
\(P_{0}=180,000=\frac{d\left(1-(1+0.05 / 12)^{-30(12)}\right)}{0.05 / 12} \mathrm{d}=\$ 966.28 \mathrm{amonth}\)
\(P_{0}=180,000=\frac{d\left(1-(1+0.06 / 12)^{-30(12)}\right)}{0.06 / 12} \mathrm{d}=\$ 1079.19\) a month
25. First we find the monthly payments:
\(P_{0}=24,000=\frac{d\left(1-(1+0.03 / 12)^{-5(12)}\right)}{0.03 / 12} \cdot d=\$ 431.25\)
Remaining balance: \(P_{0}=\frac{431.25\left(1-(1+0.03 / 12)^{-2(12)}\right)}{0.03 / 12}=\$ 10,033.45\)
27. \(6000(1+0.04 / 12)^{12 N}=10000\)
\((1.00333)^{12 N}=1.667\)
\(\log \left((1.00333)^{12 N}\right)=\log (1.667)\)
\(12 N \log (1.00333)=\log (1.667)\)
\(N=\frac{\log (1.667)}{12 \log (1.00333)}=\) about 12.8 years
29. \(3000=\frac{60\left(1-(1+0.14 / 12)^{-12 N}\right)}{0.14 / 12}\)
\(3000(0.14 / 12)=60\left(1-(1.0117)^{-12 N}\right)\)
\(\frac{3000(0.14 / 12)}{60}=0.5833=1-(1.0117)^{-12 N}\)
\(0.5833-1=-(1.0117)^{-12 N}\)
\(-(0.5833-1)=(1.0117)^{-12 N}\)
\(\log (0.4167)=\log \left((1.0117)^{-12 N}\right)\)
\(\log (0.4167)=-12 N \log (1.0117)\)
\(N=\frac{\log (0.4167)}{-12 \log (1.0117)}=\) about 6.3 years
31. First 5 years: \(P_{5}=\frac{50\left((1+0.08 / 12)^{5(12)}-1\right)}{0.08 / 12}=\$ 3673.84\)
Next 25 years: \(3673.84(1+.08 / 12)^{25(12)}=\$ 26,966.65\)
33. Working backwards, \(P_{0}=\frac{10000\left(1-(1+0.08 / 4)^{-10(4)}\right)}{0.08 / 4}=\$ 273,554.79\) needed at retirement. To end up with that amount of money, \(273,554.70=\frac{d\left((1+0.08 / 4)^{15(4)}-1\right)}{0.08 / 4}\). He’ll need to contribute \(d=\$ 2398.52\) a quarter.