Skip to main content
Mathematics LibreTexts

18.9: Finance

  • Page ID
    41799
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(A=200+.05(200)=\$ 210\)

    3. \(\mathrm{I}=200 . \mathrm{t}=13 / 52(13 \text { weeks out of } 52 \text { in a year }) . \mathrm{P}_{0}=9800\)

    \(200=9800(\mathrm{r})(13 / 52) \mathrm{r}=0.0816=8.16 \%\) annual rate

    5. \(P_{10}=300(1+.05 / 1)^{10(1)}=\$ 488.67\)

    7.

    1. \(P_{20}=2000(1+.03 / 12)^{20(12)}=\$ 3641.51\) in 20 years
    2. \(3641.51-2000=\$ 1641.51\) in interest

    9. \(P_{8}=P_{0}(1+.06 / 12)^{8(12)}=6000 \cdot P_{0}=\$ 3717.14\) would be needed

    11.

    1. \(P_{30}=\frac{200\left((1+0.03 / 12)^{30(12)}-1\right)}{0.03 / 12}=\$ 116,547.38\)
    2. \(200(12)(30)=\$ 72,000\)
    3. \(\$ 116,547.40-\$ 72,000=\$ 44,547.38\) of interest

    13.

    1. \(P_{30}=800,000=\frac{d\left((1+0.06 / 12)^{30(12)}-1\right)}{0.06 / 12} \mathrm{d}=\$ 796.40\) each month
    2. \(\$ 796.40(12)(30)=\$ 286,704\)
    3. \(\$ 800,000-\$ 286,704=\$ 513,296\) in interest

    15.

    1. \(P_{0}=\frac{30000\left(1-(1+0.08 / 1)^{-25(1)}\right)}{0.08 / 1}=\$ 320,243.29\)
    2. \(30000(25)=\$ 750,000\)
    3. \(\$ 750,000-\$ 320,243.29=\$ 429,756.71\)

    17. \(P_{0}=500,000=\frac{d\left(1-(1+0.06 / 12)^{-20(12)}\right)}{0.06 / 12} \mathrm{d}=\$ 3582.16\) each month

    19.

    \(P_{0}=\frac{700\left(1-(1+0.05 / 12)^{-30(12)}\right)}{0.05 / 12}=\) a \(\$ 130,397.13\) loan

    \(700(12)(30)=\$ 252,000\)

    \(\$ 252,200-\$ 130,397.13=\$ 121,602.87\) in interest

    21. \(P_{0}=25,000=\frac{d\left(1-(1+0.02 / 12)^{-48}\right)}{0.02 / 12}=\$ 542.38\) a month

    23.

    Down payment of \(10 \%\) is \(\$ 20,000\), leaving \(\$ 180,000\) as the loan amount

    \(P_{0}=180,000=\frac{d\left(1-(1+0.05 / 12)^{-30(12)}\right)}{0.05 / 12} \mathrm{d}=\$ 966.28 \mathrm{amonth}\)

    \(P_{0}=180,000=\frac{d\left(1-(1+0.06 / 12)^{-30(12)}\right)}{0.06 / 12} \mathrm{d}=\$ 1079.19\) a month

    25. First we find the monthly payments:

    \(P_{0}=24,000=\frac{d\left(1-(1+0.03 / 12)^{-5(12)}\right)}{0.03 / 12} \cdot d=\$ 431.25\)

    Remaining balance: \(P_{0}=\frac{431.25\left(1-(1+0.03 / 12)^{-2(12)}\right)}{0.03 / 12}=\$ 10,033.45\)

    27. \(6000(1+0.04 / 12)^{12 N}=10000\)

    \((1.00333)^{12 N}=1.667\)

    \(\log \left((1.00333)^{12 N}\right)=\log (1.667)\)

    \(12 N \log (1.00333)=\log (1.667)\)

    \(N=\frac{\log (1.667)}{12 \log (1.00333)}=\) about 12.8 years

    29. \(3000=\frac{60\left(1-(1+0.14 / 12)^{-12 N}\right)}{0.14 / 12}\)

    \(3000(0.14 / 12)=60\left(1-(1.0117)^{-12 N}\right)\)

    \(\frac{3000(0.14 / 12)}{60}=0.5833=1-(1.0117)^{-12 N}\)

    \(0.5833-1=-(1.0117)^{-12 N}\)

    \(-(0.5833-1)=(1.0117)^{-12 N}\)

    \(\log (0.4167)=\log \left((1.0117)^{-12 N}\right)\)

    \(\log (0.4167)=-12 N \log (1.0117)\)

    \(N=\frac{\log (0.4167)}{-12 \log (1.0117)}=\) about 6.3 years

    31. First 5 years: \(P_{5}=\frac{50\left((1+0.08 / 12)^{5(12)}-1\right)}{0.08 / 12}=\$ 3673.84\)

    Next 25 years: \(3673.84(1+.08 / 12)^{25(12)}=\$ 26,966.65\)

    33. Working backwards, \(P_{0}=\frac{10000\left(1-(1+0.08 / 4)^{-10(4)}\right)}{0.08 / 4}=\$ 273,554.79\) needed at retirement. To end up with that amount of money, \(273,554.70=\frac{d\left((1+0.08 / 4)^{15(4)}-1\right)}{0.08 / 4}\). He’ll need to contribute \(d=\$ 2398.52\) a quarter.


    This page titled 18.9: Finance is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by David Lippman (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?