1.7: Special Numbers
( \newcommand{\kernel}{\mathrm{null}\,}\)
Smallest exponent: e=00000000, represents denormal numbers(1.f→0.f)
Largest exponent: e=11111111, represents ±∞, if f=0e=11111111, represents NaN, if f≠0
Number Range: e=11111111=28−1=reservede=00000000=0reserved so, p=e−127 is 1−127≤p≤254−127−126≤p≤127
Smallest positive normal number=1.00000000⋯⋅.0000×2−126≃1.2×10−38bin: 00000000100000000000000000000000hex: 00800000MATLAB: realmin('single')
Largest positive number=1.11111111⋯⋯⋅1111×2127=(1+(1−2−23))×2127≃2128≃3.4×1038bin: 01111111011111111111111111111111hex: 7f7fffffMATLAB: realmax('single')
Zerobin: 0000 0000 0000 0000 0000 0000 0000 0000hex: 00000000
Subnormal numbersAllow 1.f → (in software)Smallest positive number =0.00000000⋯⋯0001×2−126=2−23×2−126≃1.4×10−45