15.3: Moment and Center of Mass

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Using a single integral we were able to compute the center of mass for a one-dimensional object with variable density, and a two dimensional object with constant density. With a double integral we can handle two dimensions and variable density.

Just as before, the coordinates of the center of mass are

$\bar x={M_y\over M} \qquad \bar y={M_x\over M},$

where $$M$$ is the total mass, $$M_y$$ is the moment around the $$y$$-axis, and $$M_x$$ is the moment around the $$x$$-axis. (You may want to review the concepts in Section 9.6.)

The key to the computation, just as before, is the approximation of mass. In the two-dimensional case, we treat density $$\sigma$$ as mass per square area, so when density is constant, mass is $$(\hbox{density})(\hbox{area})$$. If we have a two-dimensional region with varying density given by $$\sigma(x,y)$$, and we divide the region into small subregions with area $$\Delta A$$, then the mass of one subregion is approximately $$\sigma(x_i,y_j)\Delta A$$, the total mass is approximately the sum of many of these, and as usual the sum turns into an integral in the limit:

$M=\int_{x_0}^{x_1}\int_{y_0}^{y_1} \sigma(x,y)\,dy\,dx,$

and similarly for computations in cylindrical coordinates. Then as before

\eqalign{ M_x &= \int_{x_0}^{x_1}\int_{y_0}^{y_1} y\sigma(x,y)\,dy\,dx\cr M_y &= \int_{x_0}^{x_1}\int_{y_0}^{y_1} x\sigma(x,y)\,dy\,dx.\cr }

Example $$\PageIndex{1}$$

Find the center of mass of a thin, uniform plate whose shape is the region between $$y=\cos x$$ and the $$x$$-axis between $$x=-\pi/2$$ and $$x=\pi/2$$. Since the density is constant, we may take $$\sigma(x,y)=1$$.

It is clear that $$\bar x=0$$, but for practice let's compute it anyway. First we compute the mass:

\begin{align*} M&=\int_{-\pi/2}^{\pi/2} \int_0^{\cos x} 1\,dy\,dx \\[4pt]&=\int_{-\pi/2}^{\pi/2} \cos x\,dx \\[4pt]&=\left.\sin x\right|_{-\pi/2}^{\pi/2}=2.\end{align*}

Next,

\begin{align*} M_x&=\int_{-\pi/2}^{\pi/2} \int_0^{\cos x} y\,dy\,dx \\[4pt]&=\int_{-\pi/2}^{\pi/2} {1\over2}\cos^2 x\,dx\\[4pt]&={\pi\over4}.\end{align*}

Finally,

\begin{align*} M_y&=\int_{-\pi/2}^{\pi/2} \int_0^{\cos x} x\,dy\,dx \\[4pt]&=\int_{-\pi/2}^{\pi/2} x\cos x\,dx\\[4pt]&=0.\end{align*}

So $$\bar x=0$$ as expected, and $$\bar y=\pi/4/2=\pi/8$$. This is the same problem as in example 9.6.4; it may be helpful to compare the two solutions.

Example $$\PageIndex{2}$$

Find the center of mass of a two-dimensional plate that occupies the quarter circle $$x^2+y^2\le1$$ in the first quadrant and has density $$k(x^2+y^2)$$. It seems clear that because of the symmetry of both the region and the density function (both are important!), $$\bar x=\bar y$$. We'll do both to check our work.

Jumping right in:

\begin{align*} M&=\int_0^1 \int_0^{\sqrt{1-x^2}} k(x^2+y^2)\,dy\,dx \\[4pt]&=k\int_0^1 x^2\sqrt{1-x^2}+{(1-x^2)^{3/2}\over3}\,dx. \end{align*}

This integral is something we can do, but it's a bit unpleasant. Since everything in sight is related to a circle, let's back up and try polar coordinates. Then $$x^2+y^2=r^2$$ and

\begin{align*} M&=\int_0^{\pi/2} \int_0^{1} k(r^2)\,r\,dr\,d\theta \\[4pt]&=k\int_0^{\pi/2}\left.{r^4\over4}\right|_0^1\,d\theta \\[4pt]&=k\int_0^{\pi/2} {1\over4}\,d\theta \\[4pt]&=k{\pi\over8}.\end{align*}

Much better. Next, since $$y=r\sin\theta$$,

\begin{align*} M_x&=k\int_0^{\pi/2} \int_0^{1} r^4\sin\theta\,dr\,d\theta \\[4pt]&=k\int_0^{\pi/2} {1\over5}\sin\theta\,d\theta \\[4pt]&=k\left.-{1\over5}\cos\theta\right|_0^{\pi/2}={k\over5}.\end{align*}

Similarly,

\begin{align*} M_y&=k\int_0^{\pi/2} \int_0^{1} r^4\cos\theta\,dr\,d\theta \\[4pt]&=k\int_0^{\pi/2} {1\over5}\cos\theta\,d\theta \\[4pt]&=k\left.{1\over5}\sin\theta\right|_0^{\pi/2}={k\over5}.\end{align*}

Finally, $$\bar x = \bar y = {8\over5\pi}$$.

Contributors

• Integrated by Justin Marshall.

This page titled 15.3: Moment and Center of Mass is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Guichard via source content that was edited to the style and standards of the LibreTexts platform.