Skip to main content
Mathematics LibreTexts

15.3: Moment and Center of Mass

  • Page ID
    4823
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Using a single integral we were able to compute the center of mass for a one-dimensional object with variable density, and a two dimensional object with constant density. With a double integral we can handle two dimensions and variable density.

    Just as before, the coordinates of the center of mass are

    \[\bar x={M_y\over M} \qquad \bar y={M_x\over M},\]

    where \(M\) is the total mass, \(M_y\) is the moment around the \(y\)-axis, and \(M_x\) is the moment around the \(x\)-axis. (You may want to review the concepts in Section 9.6.)

    The key to the computation, just as before, is the approximation of mass. In the two-dimensional case, we treat density \(\sigma\) as mass per square area, so when density is constant, mass is \((\hbox{density})(\hbox{area})\). If we have a two-dimensional region with varying density given by \(\sigma(x,y)\), and we divide the region into small subregions with area \(\Delta A\), then the mass of one subregion is approximately \(\sigma(x_i,y_j)\Delta A\), the total mass is approximately the sum of many of these, and as usual the sum turns into an integral in the limit:

    \[M=\int_{x_0}^{x_1}\int_{y_0}^{y_1} \sigma(x,y)\,dy\,dx,\]

    and similarly for computations in cylindrical coordinates. Then as before

    \[\eqalign{
    M_x &= \int_{x_0}^{x_1}\int_{y_0}^{y_1} y\sigma(x,y)\,dy\,dx\cr
    M_y &= \int_{x_0}^{x_1}\int_{y_0}^{y_1} x\sigma(x,y)\,dy\,dx.\cr
    }\]

    Example \(\PageIndex{1}\)

    Find the center of mass of a thin, uniform plate whose shape is the region between \(y=\cos x\) and the \(x\)-axis between \(x=-\pi/2\) and \(x=\pi/2\). Since the density is constant, we may take \(\sigma(x,y)=1\).

    It is clear that \(\bar x=0\), but for practice let's compute it anyway. First we compute the mass:

    \[\begin{align*} M&=\int_{-\pi/2}^{\pi/2} \int_0^{\cos x} 1\,dy\,dx \\[4pt]&=\int_{-\pi/2}^{\pi/2} \cos x\,dx \\[4pt]&=\left.\sin x\right|_{-\pi/2}^{\pi/2}=2.\end{align*}\]

    Next,

    \[\begin{align*} M_x&=\int_{-\pi/2}^{\pi/2} \int_0^{\cos x} y\,dy\,dx \\[4pt]&=\int_{-\pi/2}^{\pi/2} {1\over2}\cos^2 x\,dx\\[4pt]&={\pi\over4}.\end{align*}\]

    Finally,

    \[\begin{align*} M_y&=\int_{-\pi/2}^{\pi/2} \int_0^{\cos x} x\,dy\,dx \\[4pt]&=\int_{-\pi/2}^{\pi/2} x\cos x\,dx\\[4pt]&=0.\end{align*}\]

    So \(\bar x=0\) as expected, and \(\bar y=\pi/4/2=\pi/8\). This is the same problem as in example 9.6.4; it may be helpful to compare the two solutions.

    Example \(\PageIndex{2}\)

    Find the center of mass of a two-dimensional plate that occupies the quarter circle \(x^2+y^2\le1\) in the first quadrant and has density \(k(x^2+y^2)\). It seems clear that because of the symmetry of both the region and the density function (both are important!), \(\bar x=\bar y\). We'll do both to check our work.

    Jumping right in:

    \[\begin{align*} M&=\int_0^1 \int_0^{\sqrt{1-x^2}} k(x^2+y^2)\,dy\,dx \\[4pt]&=k\int_0^1 x^2\sqrt{1-x^2}+{(1-x^2)^{3/2}\over3}\,dx. \end{align*}\]

    This integral is something we can do, but it's a bit unpleasant. Since everything in sight is related to a circle, let's back up and try polar coordinates. Then \(x^2+y^2=r^2\) and

    \[\begin{align*} M&=\int_0^{\pi/2} \int_0^{1} k(r^2)\,r\,dr\,d\theta \\[4pt]&=k\int_0^{\pi/2}\left.{r^4\over4}\right|_0^1\,d\theta \\[4pt]&=k\int_0^{\pi/2} {1\over4}\,d\theta \\[4pt]&=k{\pi\over8}.\end{align*}\]

    Much better. Next, since \(y=r\sin\theta\),

    \[\begin{align*} M_x&=k\int_0^{\pi/2} \int_0^{1} r^4\sin\theta\,dr\,d\theta
    \\[4pt]&=k\int_0^{\pi/2} {1\over5}\sin\theta\,d\theta
    \\[4pt]&=k\left.-{1\over5}\cos\theta\right|_0^{\pi/2}={k\over5}.\end{align*}\]

    Similarly,

    \[\begin{align*} M_y&=k\int_0^{\pi/2} \int_0^{1} r^4\cos\theta\,dr\,d\theta
    \\[4pt]&=k\int_0^{\pi/2} {1\over5}\cos\theta\,d\theta
    \\[4pt]&=k\left.{1\over5}\sin\theta\right|_0^{\pi/2}={k\over5}.\end{align*}\]

    Finally, \(\bar x = \bar y = {8\over5\pi}\).

    Contributors


    This page titled 15.3: Moment and Center of Mass is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Guichard via source content that was edited to the style and standards of the LibreTexts platform.