Skip to main content
Mathematics LibreTexts

5.7: Summary

  • Page ID
    121248
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. The equation of a tangent line to \(f(x)\) at \(x_{0}\) is given by \[y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) . \nonumber \]
    2. If \(L(x)\) is the tangent line to a function \(f(x)\) at \(x_{0}\), then \(L(x)\) forms a linear approximation to \(f(x)\) near the point \(x_{0}\).
    3. In some circumstances, the zero of a tangent line to a function \(f(x)\) at a point \(x_{0}\) can form an initial approximation to the zero of \(f(x)\).
    4. Newton’s method is based on the property of tangent lines. Newton’s method can solve a problem of the form \(f(x)=0\). Given an initial guess \(x_{0}\), the method generates successive decimal approximations to the zeros of the function to any desired accuracy. The iteration scheme is: \[x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \text {. } \nonumber \]
    Quick Concept Checks
    1. Is it possible for two different tangent lines of the same function to be parallel?
    2. When would a tangent line not intersect the \(x\)-axis?
    3. Consider the graph of the following function, and its tangent line at \(x=1\).

    clipboard_ecc3096bfc816273def8289505cf37f79.png

    1. When would the linear (tangent line) approximation result in an overestimate? Under-estimate?
    2. What is a reasonable interval on which to use this tangent line for approximation?
    1. Why might Newton’s method not work?

    This page titled 5.7: Summary is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Leah Edelstein-Keshet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.