Skip to main content
Mathematics LibreTexts

5: Tangent lines, Linear Approximation, and Newton’s Method

  • Page ID
    121105
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In Chapter 3 , we defined the tangent line as the line we see when we zoom into the graph of a (continuous) function, \(y=f(x)\), at some point. In much the same sense, the tangent line approximates the local behavior of a function near the point of tangency., \(x_{0}\). Given \(x_{0}, y_{0}=f\left(x_{0}\right)\), and the slope \(m=\) \(f^{\prime}\left(x_{0}\right)\) (the derivative), we can find the equation of the tangent line

    \[\frac{\text { rise }}{\text { run }}=\frac{y-y_{0}}{x-x_{0}}=m=f^{\prime}\left(x_{0}\right) \nonumber \]

    \[\Rightarrow \quad y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) . \label{eq1}\]

    (See Appendix A for a review of straight lines.)

    We use Equation \ref{eq1} in several applications, including linear approximation, a method for estimating the value of a function near the point of tangency. A further application of the tangent line is Newton’s method which locates zeros of a function (values of \(x\) for which \(f(x)=0\) ).


    This page titled 5: Tangent lines, Linear Approximation, and Newton’s Method is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Leah Edelstein-Keshet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?