Skip to main content
Mathematics LibreTexts

1.3.E: The Cross Product (Exercises)

  • Page ID
    77664
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    For each of the following pairs of vectors \(\mathbf{x}\) and \(\mathbf{y}\), find \(\mathbf{x} \times \mathbf{y}\) and verify that \(\mathbf{x} \perp(\mathbf{x} \times \mathbf{y})\) and \(\mathbf{y} \perp(\mathbf{x} \times \mathbf{y})\).

    (a) \(\mathbf{x}=(1,2,-1), \mathbf{y}=(-2,3,-1)\)

    (b) \(\mathbf{x}=(-2,1,4), \mathbf{y}=(3,1,2)\)

    (c) \(\mathbf{x}=(1,3,-2), \mathbf{y}=(3,9,6)\)

    (d) \(\mathbf{x}=(-1,4,1), \mathbf{y}=(3,2,-1)\)

    Answer

    (a) \(\mathbf{x} \times \mathbf{y}=(1,3,7)\)

    (b) \(\mathbf{x} \times \mathbf{y}=(-2,16,-5)\)

    (c) \(\mathbf{x} \times \mathbf{y}=(36,-12,0)\)

    (d) \(\mathbf{x} \times \mathbf{y}=(-6,2,-14)\)

    Exercise \(\PageIndex{2}\)

    Find the area of the parallelogram in \(\mathbb{R}^3\) that has the vectors \(\mathbf{x}=(2,3,1)\) and \(\mathbf{y}=(-3,3,1)\) for adjacent sides.

    Exercise \(\PageIndex{3}\)

    Find the area of the parallelogram in \(\mathbb{R}^2\) that has the vectors \(\mathbf{x}=(3,1)\) and \(\mathbf{y}=(1,4)\) for adjacent sides.

    Answer

    11

    Exercise \(\PageIndex{4}\)

    Find the area of the parallelogram in \(\mathbb{R}^3\) that has vertices at (1, 1, 1), (2, 3, 2), (−2, 4, 4), and (−3, 2, 3).

    Exercise \(\PageIndex{5}\)

    Find the area of the parallelogram in \(\mathbb{R}^2\) that has vertices at (2,−1), (4,−2), (3,0), and (1,1).

    Answer

    3

    Exercise \(\PageIndex{6}\)

    Find the area of the triangle in \(\mathbb{R}^3\) that has vertices at (1, 1, 0), (2, 3, 1), and (−1, 3, 2).

    Exercise \(\PageIndex{7}\)

    Find the area of the triangle in \(\mathbb{R}^2\) that has vertices at (−1, 2), (2, −1), and (1, 3).

    Answer

    \(\frac{9}{2}\)

    Exercise \(\PageIndex{8}\)

    Find the volume of the parallelepiped that has the vectors \(\mathbf{x}=(1,2,1)\), \(\mathbf{y}=(-1,1,1)\), and \(\mathbf{z}=(-1,-1,6)\) for adjacent sides.

    Exercise \(\PageIndex{9}\)

    A parallelepiped has base vertices at (1, 1, 1), (2, 3, 2), (−2, 4, 4), and (−3, 2, 3) and top vertices at (2, 2, 6), (3, 4, 7), (−1, 5, 9), and (−2, 3, 8). Find its volume.

    Answer

    42

    Exercise \(\PageIndex{10}\)

    Verify the properties of the cross product stated in Equation (1.3.8) through (1.3.12).

    Exercise \(\PageIndex{11}\)

    Since \(\vert \mathbf{z} \cdot (\mathbf{x} \times \mathbf{y}) \vert\) \(\vert \mathbf{y} \cdot (\mathbf{z} \times \mathbf{x}) \vert \), and \(\vert \mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) \vert \) are all equal to the volume of a parallelepiped with adjacent edges \(\mathbf{x}\), \(\mathbf{y}\), and \(\mathbf{z}\), they should all have the same value.

    Show that in fact

    \[ \mathbf{z} \cdot (\mathbf{x} \times \mathbf{y}) = \mathbf{y} \cdot (\mathbf{z} \times \mathbf{x}) = \mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) \nonumber \]

    How do these compare with \( \mathbf{z} \cdot (\mathbf{y} \times \mathbf{z})\), \(\mathbf{y} \cdot (\mathbf{z} \times \mathbf{x})\), and \(\mathbf{x} \cdot (\mathbf{z} \times \mathbf{y} ) \)?

    Exercise \(\PageIndex{12}\)

    Suppose \(\mathbf{x}\) and \(\mathbf{y}\) are parallel vectors in\(\mathbb{R}^3\). Show directly from the definition of the cross product that \(\mathbf{x} \times \mathbf{y}=\mathbf{0}\).

    Exercise \(\PageIndex{13}\)

    Show by example that the cross product is not associative. That is, find vectors \(\mathbf{x}\), \(\mathbf{y}\), and \(\mathbf{z}\) such that \[\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) \neq (\mathbf{x} \times \mathbf{y}) \times \mathbf{z} \nonumber . \]

    Answer

    For example, \(\mathbf{e}_{2} \times\left(\mathbf{e}_{2} \times \mathbf{e}_{3}\right)=-\mathbf{e}_{3}\), whereas \(\left(\mathbf{e}_{2} \times \mathbf{e}_{2}\right) \times \mathbf{e}_{3}=\mathbf{0}\).


    This page titled 1.3.E: The Cross Product (Exercises) is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.