# 7.2: Reflection Across a Point

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Fix a point $$O$$. If $$O$$ is the midpoint of a line segment $$[XX']$$, then we say that $$X'$$ is a reflection of $$X$$ across the point $$O$$.

Note that the map $$X \mapsto X'$$ is uniquely defined; it is called a reflection across $$O$$. In this case $$O$$ is called the center of reflection. We assume that $$O' = O$$; that is, $$O$$ is a reflection of itself across itself. If the reflection across $$O$$ moves a set $$S$$ to itself, then we say that $$S$$ is centrally symmetric with respect to $$O$$.

Recall that any motion is either direct or indirect; that is, it either preserves or reverts the signs of angles.

## Proposition $$\PageIndex{1}$$

Any reflection across a point is a direct motion.

Proof

Observe that if $$X'$$ is a reflection of $$X$$ acroos $$O$$, then $$X$$ is a reflection of $$X'$$. In other words, the composition of the reflection with itself is the identity map. In particular, any reflection across a point is a bijection.

Fix two points $$X$$ and $$Y$$; let $$X'$$ and $$Y'$$ be their reflection across $$O$$. To check that the reflection is distance preserving, we need to show that $$X'Y' = XY$$.

We may assume that $$X, Y$$ and $$O$$ are distinct; otherwise the statement is trivial. By definition of reflection across $$O$$, we have that $$OX = OX'$$, $$OY = OY'$$, and the angles $$XOY$$ and $$X'OY'$$ are vertical; in particular $$\measuredangle XOY = \measuredangle X'OY'$$. By SAS, $$\triangle XOY \cong \triangle X'OY'$$; therefore $$X'Y' = XY$$.

Finally, the reflection across $$O$$ cannot be indirect since $$\measuredangle XOY = \measuredangle X'OY'$$; therefore it is a direct motion.

## Exercise $$\PageIndex{1}$$

Suppose $$\angle AOB$$ is right. Show that the composition of reflections across the lines $$(OA)$$ and $$(OB)$$ is a reflection across $$O$$.

Use this statement and Corollary 5.4.1 to build another proof of Proposition $$\PageIndex{1}$$.

## Theorem $$\PageIndex{1}$$

Let $$\ell$$ be a line, $$Q \in \ell$$, and $$P$$ is an arbitrary point. Suppose $$O$$ is the midpoint of $$[PQ]$$. Then a line $$m$$ passing thru $$P$$ is parallel to $$\ell$$ if and only if $$m$$ is a reflection of $$\ell$$ across $$O$$.

Proof

"if" part. Assume $$m$$ is a reflection of $$\ell$$ across $$O$$. Suppose $$\ell \nparallel m$$; that is $$\ell$$ and $$m$$ intersect at a single point $$Z$$. Denote by $$Z'$$ be the reflection of $$Z$$ across $$O$$.

Note that $$Z'$$ lies on both lines $$\ell$$ and $$m$$. It follows that $$Z' = Z$$ or equivalently $$Z = O$$. In this case $$O \in \ell$$ and therefore the reflection of $$\ell$$ across $$O$$ is $$\ell$$ itself; that is, $$\ell = m$$ and in particular $$\ell \parallel m$$ -- a contradiction.

"Only-if" part. Let $$\ell '$$ be the reflection of $$\ell$$ across $$O$$. According to the "if" part of the theorem, $$\ell ' \parallel \ell$$. Note that both lines $$\ell '$$ and $$m$$ pass thru $$P$$. By uniqueness of parallel lines (Theorem 7.1.1), if $$m \parallel \ell$$, then $$\ell ' = m$$; whence the statement follows.

This page titled 7.2: Reflection Across a Point is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.