12: Hyperbolic Lane
( \newcommand{\kernel}{\mathrm{null}\,}\)
In this chapter, we use inversive geometry to construct the model of a hyperbolic plane — a neutral plane that is not Euclidean. Namely, we construct the so-called conformal disc model of the hyperbolic plane. This model was discovered by Beltrami in [4] and often called the Poincaré disk model. The figure below shows the conformal disc model of the hyperbolic plane which is cut into congruent triangles with angles π3,π3, and π4.