# 13.4: Hyperbolic triangles

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Theorem $$\PageIndex{1}$$

Any nondegenerate hyperbolic triangle has a positive defect.

Proof

Fix an h-triangle $$ABC$$. According to Theorem 11.3.1,

$\text{defect}(\triangle_hABC)\ge 0$

It remains to show that in the case of equality, $$\triangle_hABC$$ degenerates.

Without loss of generality, we may assume that $$A$$ is the center of the absolute; in this case $$\measuredangle_h CAB = \measuredangle CAB$$. Yet we may assume that

$$\measuredangle_h CAB$$, $$\measuredangle_h ABC$$, $$\measuredangle_h BCA$$, $$\measuredangle ABC$$, $$\measuredangle BCA \ge 0.$$

Let $$D$$ be an arbitrary point in $$[CB]_h$$ distinct from $$B$$ and $$C$$. From Proposition 9.6.1, we have

$$\measuredangle ABC-\measuredangle_h ABC \equiv \pi-\measuredangle CDB \equiv \measuredangle BCA-\measuredangle_h BCA.$$

From Exercise 7.4.2, we get that

Therefore, if we have equality in 13.4.1, then $$\measuredangle CDB=\pi$$. In particular, the h-segment $$[BC]_h$$ coincides with the Euclidean segment $$[BC]$$. By Exercise 12.1.3, the latter can happen only if the h-line $$(BC)_h$$ passes thru the center of the absolute ($$A$$); that is, if $$\triangle_hABC$$ degenerates.

The following theorem states, in particular, that nondegenerate hyperbolic triangles are congruent if their corresponding angles are equal. In particular, in hyperbolic geometry, similar triangles have to be congruent.

## Theorem $$\PageIndex{2}$$ AAA congruence condition

Two nondegenerate h-triangles $$ABC$$ and $$A'B'C'$$ are congruent if $$\measuredangle_hABC = \pm \measuredangle_hA'B'C'$$, $$\measuredangle_hBCA = \pm \measuredangle_h B'C'A'$$ and $$\measuredangle_hCAB = \pm \measuredangle_hC'A'B'$$.

Proof

Note that if $$AB_h=A'B'_h$$, then the theorem follows from ASA.

Assume the contrary. Without loss of generality, we may assume that $$AB_h<A'B'_h$$. Therefore, we can choose the point $$B''\in [A'B']_h$$ such that $$A'B''_h=AB_h$$.

Choose an h-half-line $$[B''X)$$ so that

$$\measuredangle_h A'B''X=\measuredangle_h A'B'C'.$$

According to Exercise 11.5, $$(B''X)_h\parallel(B'C')_h$$.

By Pasch’s theorem (Theorem 3.12), $$(B''X)_h$$ intersects $$[A'C']_h$$. Suppose that $$C''$$ denotes the point of intersection.

According to ASA, $$\triangle_h ABC\cong\triangle_h A'B''C''$$; in particular,

$\text{defect}(\triangle_h ABC)=\text{defect}(\triangle_h A'B''C'').$

Applying Exercise 11.11 twice, we get that

$\begin{array} {rcl} {\text{defect} (\triangle_h A'B'C')} & = & {\text{defect} (\triangle_h A'B''C'') +} \\ {} & + & {\text{defect}(\triangle_h B''C''C') + \text{defect} (\triangle_h B''C'B').} \end{array}$

By Theorem 13.7, all the defects have to be positive. Therefore

$$\text{defect} (\triangle_h A'B'C') > \text{defect} (\triangle_h ABC).$$

On the other hand,

$$\begin{array} {rcl} {\text{defect} (\triangle_h A'B'C')} & = & {|\measuredangle_h A'B'C'| + |\measuredangle_h B'C'A'| + |\measuredangle_h C'A'B'| =} \\ {} & = & {|\measuredangle_h ABC| + |\measuredangle_BCA| + |\measuredangle_h CAB|} \\ {} & = & {\text{defect} (\triangle_h ABC)} \end{array}$$

Recall that a bijection from a h-plane to itself is called angle preserving if

$$\measuredangle_h ABC= \measuredangle_h A'B'C'$$

for any $$\triangle_h ABC$$ and its image $$\triangle_h A'B'C'$$.

## Exercise $$\PageIndex{1}$$

Show that any angle-preserving transformation of the h-plane is a motion.

Hint

Apply AAA-congruence condition (Theorem $$\PageIndex{2}$$)

This page titled 13.4: Hyperbolic triangles is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.