# 9.6: Tangent half-lines

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Suppose $$ABC$$ is an arc of a circle $$\Gamma$$. A half-line $$[AX)$$ is called tangent to the arc $$ABC$$ at $$A$$ if the line $$(AX)$$ is tangent to $$\Gamma$$, and the points $$X$$ and $$B$$ lie on the same side of the line $$(AC)$$.

If the arc is formed by the line segment $$[AC]$$ then the half-line $$[AC)$$ is considered to be tangent at $$A$$. If the arc is formed by a union of two half lines $$[AX)$$ and $$[BY)$$ in $$(AC)$$, then the half-line $$[AX)$$ is considered to be tangent to the arc at $$A$$.

## Proposition $$\PageIndex{1}$$

The half-line $$[AX)$$ is tangent to the arc $$ABC$$ if and only if

$$\measuredangle ABC + \measuredangle CAX \equiv \pi$$.

Proof

For a degenerate arc $$ABC$$, the statement is evident. Further we assume the arc $$ABC$$ is nondegenerate.

Applying Theorem 9.1.1 and Theorem 9.2.1, we get that

$$2 \cdot \measuredangle ABC + 2 \cdot \measuredangle CAX \equiv 0$$.

Therefore, either

$$\measuredangle ABC + \measuredangle CAX \equiv \pi$$, or $$\measuredangle ABC + \measuredangle CAX \equiv 0$$.

Since $$[AX)$$ is the tangent half-line to the arc $$ABC, X$$ and $$B$$ lie on the same side of $$(AC)$$. By Corollary 3.4.1 and Theorem 3.3.1, the angles $$CAX$$, $$CAB$$, and $$ABC$$ have the same sign. In particular, $$\measuredangle ABC + \measuredangle CAX \not\equiv 0$$; that is, we are left with the case

$$\measuredangle ABC +\measuredangle CAX \equiv \pi$$.

## Exercise $$\PageIndex{1}$$

Show that there is a unique arc with endpoints at the given points $$A$$ and $$C$$, that is tangent to the given half line $$[AX)$$ at $$A$$.

Hint

If $$C \in (AX)$$, then the arc is the line segment $$[AC]$$ or the union of two half-lines in $$(AX)$$ with vertices at $$A$$ and $$C$$.

Assume $$C \not\in (AX)$$. Let $$\ell$$ be the perpendicular line dropped from $$A$$ to $$(AX)$$ and $$m$$ be the perpendicular bisector of $$[AC]$$.

Note that $$\ell \nparallel m$$; set $$O = \ell \cap m$$. Note that the circle with center $$O$$ passing thru $$A$$ is also passing thru $$C$$ and tangent to $$(AX)$$.

Note that one the two arcs with endpoints $$A$$ and $$C$$ is tangent to $$[AX)$$.

The uniqueness follow from Proposition $$\PageIndex{1}$$.

## Exercise $$\PageIndex{2}$$

Let $$[AX)$$ be the tangent half-line to an arc $$ABC$$. Assume $$Y$$ is a point on the arc $$ABC$$ that is distinct from $$A$$. Show that $$\measuredangle XAY \to 0$$ as $$AY \to 0$$.

Hint

Use Proposition $$\PageIndex{1}$$ and Theorem 7.4.1 to show that $$\measuredangle XAY = \measuredangle ACY$$. By Axiom IIIc, $$\measuredangle ACY \to 0$$ as $$AY \to 0$$; hence the result.

## Exercise $$\PageIndex{3}$$

Given two circle arcs $$AB_1C$$ and $$AB_2C$$, let $$[AX_1)$$ and $$[AX_2)$$ at $$A$$, and $$[CY_1)$$ and $$[CY_2)$$ be the half-lines tangent to the arcs $$AB_1C$$ and $$AB_2C$$ at $$C$$. Show that

$$\measuredangle X_1AX_2 \equiv -\measuredangle Y_1CY_2.$$

Hint

Apply Proposition $$\PageIndex{1}$$ twice.

(Alternatively, apply Corollary 5.4.1 for the reflection across the perpendicular bisector of $$[AC]$$.)

This page titled 9.6: Tangent half-lines is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.