# 9.2: Inscribed angle

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

We say that a triangle is inscribed in the circle $$\Gamma$$ if all its vertices lie on $$\Gamma$$.

## Theorem $$\PageIndex{1}$$

Let $$\Gamma$$ be a circle with the center $$O$$, and $$X, Y$$ be two distinct points on $$\Gamma$$. Then $$\triangle XPY$$ is inscribed in $$\Gamma$$ if and only if

$2 \cdot \measuredangle XPY \equiv \measuredangle XOY.$

Equivalently, if and only if

$$\measuredangle XPY \equiv \dfrac{1}{2} \cdot \measuredangle XOY$$ or $$\measuredangle XPY \equiv \pi + \dfrac{1}{2} \cdot \measuredangle XOY.$$

Proof

the "only if" part. Let $$(PQ)$$ be the tangent line to $$\Gamma$$ at $$P$$. By Theorem 9.1.1,

$$2 \cdot \measuredangle QPX \equiv \measuredangle POX$$, $$2 \cdot \measuredangle QPY \equiv \measuredangle POY.$$

Subtracting one identity from the other, we get 9.2.1.

"If" part. Assume that 9.2.1 holds for some $$P \not\in \Gamma$$. Note that $$\measuredangle XOY \ne 0$$. Therefore, $$\measuredangle XPY \ne 0$$ nor $$\pi$$; that is, $$\measuredangle PXY$$ is nondegenerate.

The line $$(PX)$$ might be tangent to $$\Gamma$$ at the point $$X$$ or intersect $$\Gamma$$ at another point; in the latter case, suppose that $$P'$$ denotes this point of intersection.

In the first case, by Theorem 9.1, we have

$$2 \cdot \measuredangle PXY \equiv \measuredangle XOY \equiv 2 \cdot \measuredangle XPY.$$

Applying the transversal property (Theorem 7.3.1), we get that $$(XY) \parallel (PY)$$, which is impossible since $$\triangle PXY$$ is nondegenerate.

In the second case, applying the "if" part and that $$P, X$$, and $$P'$$ lie on one line (see Exercise 2.4.2) we get that

$$\begin{array} {rcl} {2 \cdot \measuredangle P'PY} & \equiv & {2 \cdot \measuredangle XPY \equiv \measuredangle XOY \equiv} \\ {} & \equiv & {2 \cdot \measuredangle XP'Y \equiv 2 \cdot \measuredangle XP'P.} \end{array}$$

Again, by transversal property, $$(PY) \parallel (P'Y)$$, which is impossible since $$\triangle PXY$$ is nondegenerate.

## Exercise $$\PageIndex{1}$$

Let $$X, X', Y$$, and $$Y'$$ be distinct points on the circle $$\Gamma$$. Assume $$(XX')$$ meets $$(YY')$$ at a point $$P$$. Show that

(a) $$2 \cdot \measuredangle XPY \equiv \measuredangle XOY + \measuredangle X'OY'$$;

(b) $$\triangle PXY \sim \triangle PY'X'$$;

(c) $$PX \cdot PX' = |OP^2 - r^2|$$, where $$O$$ is the center and $$r$$ is the radius of $$\Gamma$$.

(The value $$OP^2 - r^2$$ is called the power of the point $$P$$ with respect to the circle $$\Gamma$$. Part (c) of the exercise makes it a useful tool to study circles, but we are not going to consider it further in the book.)

Hint

(a) Apply Theorem $$\PageIndex{1}$$ for $$\angle XX'Y$$ and $$\angle X'YY'$$ and Theorem 7.4.1 for $$\triangle PYX'$$.

(b) If $$P$$ is inside of $$\Gamma$$ then $$P$$ lies between $$X$$ and $$X'$$ and between $$Y$$ and $$Y'$$ in this case $$\angle XPY$$ is vertical to $$\angle X'PY'$$. If $$P$$ is outside of $$\Gamma$$ then $$[PX) = [PX')$$ and $$[PY) = [PY')$$. In both cases we have that $$\measuredangle XPY = \measuredangle X'PY'$$.

Applying Theorem $$\PageIndex{1}$$ and Exercise 2.4.2, we get that

$$2 \cdot \measuredangle Y'X'P \equiv 2 \cdot \measuredangle Y'X'X \equiv 2 \cdot \measuredangle Y'YX \equiv 2 \dot \measuredangle PYX.$$

According to Theorem 3.3.1, $$\angle Y'X'P$$ and $$\angle PYX$$ have the same sign; therefore $$\measuredangle Y'X'P = \measuredangle PYX$$. It remains to apply the AA similarity condition.

(c) Apply (b) assuming $$[YY']$$ is the diameter of $$\Gamma$$.

## Exercise $$\PageIndex{2}$$

Three chords $$[XX']$$, $$[YY']$$, and $$[ZZ']$$ of the circle $$\Gamma$$ intersect at a point $$P$$. Show that

$$XY' \cdot ZX' \cdot YZ' = X'Y \cdot Z'X \cdot Y'Z.$$

Hint

Apply Exerciese $$\PageIndex{1} b three times. ## Exercise \(\PageIndex{3}$$

Let $$\Gamma$$ be a circumcircle of an acute triangle $$ABC$$. Let $$A'$$ and $$B'$$ denote the second points of intersection of the altitudes from $$A$$ and $$B$$ with $$\Gamma$$. Show that $$\triangle A'B'C$$ is isosceles.

Hint

Let $$X$$ and $$Y$$ be the foot points of the altitudes from $$A$$ and $$B$$. Suppose that $$O$$ denotes the circumcenter.

By AA condition, $$\triangle AXC \sim \triangle BYC$$. Then

$$\measuredangle A'OC \equiv 2 \cdot \measuredangle A'AC \equiv - 2 \cdot \measuredangle B'BC \equiv - \measuredangle B'OC.$$

By SAS, $$\triangle A'OC \cong \triangle B'OC$$. Therefore, $$A'C = B'C$$.

## Exercise $$\PageIndex{4}$$

Let $$[XY]$$ and $$[X'Y']$$ be two parallel chords of a circle. Show that $$XX' = YY'$$.

## Exercise $$\PageIndex{5}$$

Watch “Why is pi here? And why is it squared? A geo- metric answer to the Basel problem” by Grant Sanderson. (It is available on YouTube.)

Prepare one question.

This page titled 9.2: Inscribed angle is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.